# auto-sklearn **Repository Path**: hao-jinheng/auto-sklearn ## Basic Information - **Project Name**: auto-sklearn - **Description**: Automated Machine Learning with scikit-learn - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-10 - **Last Updated**: 2024-07-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation [here](http://automl.github.io/auto-sklearn/) ## Automated Machine Learning in four lines of code ```python import autosklearn.classification cls = autosklearn.classification.AutoSklearnClassifier() cls.fit(X_train, y_train) predictions = cls.predict(X_test) ``` ## Relevant publications Efficient and Robust Automated Machine Learning Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter Advances in Neural Information Processing Systems 28 (2015) http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf Auto-Sklearn 2.0: The Next Generation Authors: Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter arXiv:2007.04074 [cs.LG], 2020 https://arxiv.org/abs/2007.04074