# pinn-sampling **Repository Path**: happtain/pinn-sampling ## Basic Information - **Project Name**: pinn-sampling - **Description**: copy from https://github.com/lu-group/pinn-sampling.git - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-04 - **Last Updated**: 2025-12-04 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PINN-sampling: Non-adaptive and residual-based adaptive sampling for PINNs The data and code for the paper [C. Wu, M. Zhu, Q. Tan, Y. Kartha, & L. Lu. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. *Computer Methods in Applied Mechanics and Engineering*, 403, 115671, 2023](https://doi.org/10.1016/j.cma.2022.115671). ## Code - [Diffusion equation](src/diffusion) - [Burgers’ equation](src/burgers) - [Allen–Cahn equation](src/allen_cahn) - [Wave equation](src/wave) - [Diffusion–reaction equation (inverse problem)](src/diffusion_reaction_inverse) - [Korteweg–de Vries equation (inverse problem)](src/korteweg_de_vries_inverse) ## Cite this work If you use this data or code for academic research, you are encouraged to cite the following paper: ``` @article{wu2023comprehensive, title = {A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks}, author = {Wu, Chenxi and Zhu, Min and Tan, Qinyang and Kartha, Yadhu and Lu, Lu}, journal = {Computer Methods in Applied Mechanics and Engineering}, volume = {403}, pages = {115671}, year = {2023}, doi = {https://doi.org/10.1016/j.cma.2022.115671} } ``` ## Questions To get help on how to use the data or code, simply open an issue in the GitHub "Issues" section.