# WaveletSRNet **Repository Path**: harry56/WaveletSRNet ## Basic Information - **Project Name**: WaveletSRNet - **Description**: A pytorch implementation of Paper "Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution" - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2020-07-18 - **Last Updated**: 2021-12-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # WaveletSRNet A pytorch implementation of Paper ["Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution"](http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Wavelet-SRNet_A_Wavelet-Based_ICCV_2017_paper.html) ## Prerequisites * Python 2.7 * PyTorch ## Run Use the default hyparameters except changing the parameter "upscale" according to the expected upscaling factor(2, 3, 4 for 4, 8, 16 upcaling factors, respectively). >CUDA_VISIBLE_DEVICES=1 python main.py --ngpu=1 --test --start_epoch=0 --test_iter=1000 --batchSize=64 --test_batchSize=32 --nrow=4 --upscale=3 --input_height=128 --output_height=128 --crop_height=128 --lr=2e-4 --nEpochs=500 --cuda ## Results ![](https://github.com/hhb072/WaveletSRNet/blob/master/results.png) ## Citation If you use our codes, please cite the following paper: @inproceedings{huang2017wavelet, title={Wavelet-srnet: A wavelet-based cnn for multi-scale face super resolution}, author={Huang, Huaibo and He, Ran and Sun, Zhenan and Tan, Tieniu}, booktitle={IEEE International Conference on Computer Vision}, pages={1689--1697},     year={2017} } **The released codes are only allowed for non-commercial use.**