# Image_Segmentation **Repository Path**: harrylan/Image_Segmentation ## Basic Information - **Project Name**: Image_Segmentation - **Description**: Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-17 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ### pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net **U-Net: Convolutional Networks for Biomedical Image Segmentation** https://arxiv.org/abs/1505.04597 **Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation** https://arxiv.org/abs/1802.06955 **Attention U-Net: Learning Where to Look for the Pancreas** https://arxiv.org/abs/1804.03999 **Attention R2U-Net : Just integration of two recent advanced works (R2U-Net + Attention U-Net)** ## U-Net ![U-Net](/img/U-Net.png) ## R2U-Net ![R2U-Net](/img/R2U-Net.png) ## Attention U-Net ![AttU-Net](/img/AttU-Net.png) ## Attention R2U-Net ![AttR2U-Net](/img/AttR2U-Net.png) ## Evaluation we just test the models with [ISIC 2018 dataset](https://challenge2018.isic-archive.com/task1/training/). The dataset was split into three subsets, training set, validation set, and test set, which the proportion is 70%, 10% and 20% of the whole dataset, respectively. The entire dataset contains 2594 images where 1815 images were used for training, 259 for validation and 520 for testing models. ![evaluation](/img/Evaluation.png)