# Contfuse **Repository Path**: hchouse/Contfuse ## Basic Information - **Project Name**: Contfuse - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-09 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Contfuse: Deep Continuous Fusion for Multi-Sensor 3D Object Detection ## Introduction It's a unofficial tensorflow Implementation of Contfuse: Deep Continuous Fusion for Multi-Sensor 3D Object Detection. It uses C++ \ CUDA C \ Python to complete this project. ## Train on KITTI Dataset I split KITTI train data to testing data \ training data \ verification data. ```shell kitti dataset: <-- 7481 train data |-- data_object_calib <-- 7481 |--calib |-- image_2 <-- 7481 |-- lidar_files <-- 7481 |-- testing |-- label_files <-- 1000 |-- training |-- label_files <-- 6431 |-- val |-- label_files <-- 50 ``` ## How to use it? ### Dependencies tensorflow 1.14 numpy 1.16 opencv 3.4 easydict cudnn 7.6.0 cuda 10.1 python 3.7 tqdm ### train step. 1 Generate dataset index document, you need modified dataset path. ```shell cd src/scripts python gen_dataset_idx.py ``` step. 2 train ```shell python train.py ``` ### predict ``` python predict.py ``` ## Credit CONTFUSE: Deep Continuous Fusion for Multi-Sensor 3D Object Detection PIXOR: Real-time 3D Object Detection from Point Clouds