# DR_loss **Repository Path**: hchouse/DR_loss ## Basic Information - **Project Name**: DR_loss - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-15 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DR Loss PyTorch Implementation for Our CVPR'20 Paper: "DR Loss: Improving Object Detection by Distributional Ranking" ## Requirements * Python 3.7 * PyTorch 1.1 * [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) ## Usage: 1. Put the loss file to the codebase of maskrcnn_benchmark at ``` maskrcnn-benchmark/maskrcnn_benchmark/layers/sigmoid_dr_loss.py ``` and add the class into "init.py". 2. Change the focal loss in RetinaNet to the dr loss at ``` maskrcnn-benchmark/maskrcnn_benchmark/modeling/rpn/retinanet/loss.py ``` 3. Run RetinaNet with the configurations in "configs/dr_retina". ## Models: model | lr sched| multi-scale training | mAP(minival) | mAP (test-dev) | link -- | -- | -- | -- | -- | -- Dr_Retina_R-50-FPN | 1x | No | 37.4 | 37.6 | [Google Drive](https://drive.google.com/file/d/1bLNfqlQ3zpAKUihbZY-NKPe0pYAReUGy/view?usp=sharing) Dr_Retina_R-101-FPN | 2x | Yes | 41.5 | 41.7 | [Google Drive](https://drive.google.com/file/d/1hMg_-epThR32DQtzCzpdhDTiriob9ir9/view?usp=sharing) ## Citation If you use the package in your research, please cite our paper: ``` @inproceedings{qian2020dr, author = {Qi Qian and Lei Chen and Hao Li and Rong Jin}, title = {DR Loss: Improving Object Detection by Distributional Ranking}, booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2020}, year = {2020} } ```