# PF-Net-Point-Fractal-Network **Repository Path**: hchouse/PF-Net-Point-Fractal-Network ## Basic Information - **Project Name**: PF-Net-Point-Fractal-Network - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-12 - **Last Updated**: 2021-01-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PF-Net-Point-Fractal-Network This repository is still under constructions. If you have any questions about the code, please email me. Thanks! This is the Pytorch implement of CVPR2020 PF-Net: Point Fractal Network for 3D Point Cloud Completion. https://arxiv.org/abs/2003.00410 ##0) Environment Pytorch 1.0.1 Python 3.7.4 ##1) Dataset ``` cd dataset bash download_shapenet_part16_catagories.sh You can also download the dataset from 链接:https://pan.baidu.com/s/1MavAO_GHa0a6BZh4Oaogug 提取码:3hoe ``` ##2) Train ``` python Train_FPNet.py ``` Change ‘crop_point_num’ to control the number of missing points. Change ‘point_scales_list ’to control different input resolutions. Change ‘D_choose’to control without using D-net. ##3) Evaluate the Performance on ShapeNet ``` python show_recon.py ``` Show the completion results, the program will generate txt files in 'test-examples'. ``` python show_CD.py ``` Show the Chamfer Distances and two metrics in our paper. ##4) Visualization of csv File We provide some incomplete point cloud in file 'test_one'. Use the following code to complete a incomplete point cloud of csv file: ``` python Test_csv.py ``` change ‘infile’and ‘infile_real’to select different incomplete point cloud in ‘test_one’ ##5) Visualization of Examples Using Meshlab to visualize the txt files.