# Voxel-R-CNN
**Repository Path**: hchouse/Voxel-R-CNN
## Basic Information
- **Project Name**: Voxel-R-CNN
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2021-04-08
- **Last Updated**: 2021-11-25
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Voxel R-CNN
This is the official implementation of [**Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection**](https://arxiv.org/abs/2012.15712), built on [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet).
@article{deng2020voxel,
title={Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection},
author={Deng, Jiajun and Shi, Shaoshuai and Li, Peiwei and Zhou, Wengang and Zhang, Yanyong and Li, Houqiang},
journal={arXiv:2012.15712},
year={2020}
}
### Installation
1. Prepare for the running environment.
You can either use the docker image we provide, or follow the installation steps in [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet).
```
docker pull djiajun1206/pcdet-pytorch1.5
```
2. Prepare for the data.
Please download the official [KITTI 3D object detection](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) dataset and organize the downloaded files as follows (the road planes could be downloaded from [[road plane]](https://drive.google.com/file/d/1d5mq0RXRnvHPVeKx6Q612z0YRO1t2wAp/view?usp=sharing), which are optional for data augmentation in the training):
```
Voxel-R-CNN
├── data
│ ├── kitti
│ │ │── ImageSets
│ │ │── training
│ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│ │ │── testing
│ │ │ ├──calib & velodyne & image_2
├── pcdet
├── tools
```
Generate the data infos by running the following command:
```
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml
```
3. Setup.
```
python setup.py develop
```
### Getting Started
1. Training.
The configuration file is in tools/cfgs/voxelrcnn, and the training scripts is in tools/scripts.
```
cd tools
sh scripts/train_voxel_rcnn.sh
```
2. Evaluation.
The configuration file is in tools/cfgs/voxelrcnn, and the training scripts is in tools/scripts.
```
cd tools
sh scripts/eval_voxel_rcnn.sh
```
### Acknowledge
Thanks to the strong and flexible [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet) codebase maintained by Shaoshuai Shi ([@sshaoshuai](http://github.com/sshaoshuai)) and Chaoxu Guo ([@Gus-Guo](https://github.com/Gus-Guo)).
### Contact
This repository is implemented by Jiajun Deng (dengjj@mail.ustc.edu.cn).