# Voxel-R-CNN **Repository Path**: hchouse/Voxel-R-CNN ## Basic Information - **Project Name**: Voxel-R-CNN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-04-08 - **Last Updated**: 2021-11-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Voxel R-CNN

This is the official implementation of [**Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection**](https://arxiv.org/abs/2012.15712), built on [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet). @article{deng2020voxel, title={Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection}, author={Deng, Jiajun and Shi, Shaoshuai and Li, Peiwei and Zhou, Wengang and Zhang, Yanyong and Li, Houqiang}, journal={arXiv:2012.15712}, year={2020} } ### Installation 1. Prepare for the running environment. You can either use the docker image we provide, or follow the installation steps in [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet). ``` docker pull djiajun1206/pcdet-pytorch1.5 ``` 2. Prepare for the data. Please download the official [KITTI 3D object detection](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) dataset and organize the downloaded files as follows (the road planes could be downloaded from [[road plane]](https://drive.google.com/file/d/1d5mq0RXRnvHPVeKx6Q612z0YRO1t2wAp/view?usp=sharing), which are optional for data augmentation in the training): ``` Voxel-R-CNN ├── data │ ├── kitti │ │ │── ImageSets │ │ │── training │ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes) │ │ │── testing │ │ │ ├──calib & velodyne & image_2 ├── pcdet ├── tools ``` Generate the data infos by running the following command: ``` python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml ``` 3. Setup. ``` python setup.py develop ``` ### Getting Started 1. Training. The configuration file is in tools/cfgs/voxelrcnn, and the training scripts is in tools/scripts. ``` cd tools sh scripts/train_voxel_rcnn.sh ``` 2. Evaluation. The configuration file is in tools/cfgs/voxelrcnn, and the training scripts is in tools/scripts. ``` cd tools sh scripts/eval_voxel_rcnn.sh ``` ### Acknowledge Thanks to the strong and flexible [`OpenPCDet`](https://github.com/open-mmlab/OpenPCDet) codebase maintained by Shaoshuai Shi ([@sshaoshuai](http://github.com/sshaoshuai)) and Chaoxu Guo ([@Gus-Guo](https://github.com/Gus-Guo)). ### Contact This repository is implemented by Jiajun Deng (dengjj@mail.ustc.edu.cn).