# pillar-od **Repository Path**: hchouse/pillar-od ## Basic Information - **Project Name**: pillar-od - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-21 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Pillar-based Object Detection for Autonomous Driving ### Prerequisite TensorFlow (https://www.tensorflow.org/install) TensorFlow Addons (https://www.tensorflow.org/addons/overview) Waymo Open Dataset (https://github.com/waymo-research/waymo-open-dataset) Lingvo (https://github.com/tensorflow/lingvo) ### Data 1. Download the data from https://waymo.com/open/ 2. Pre-process the data using the script "data/generate_waymo_dataset.sh" ### Train and eval Check "train.py", "eval.py", and "config.py" ### Evaluation using pretrained models 1. Download the weights from https://drive.google.com/file/d/16cFbbKfEXc5uH7V6xDw6fy3lVBCgHLNd/view?usp=sharing 2. For car, `python eval.py --class_id=1 --nms_iou_threshold=0.7 --pillar_map_size=256 --ckpt_path=/path/to/checkpoints --data_path=/path/to/data --model_dir=/path/to/results` For pedestrian, `python eval.py --class_id=2 --nms_iou_threshold=0.2 --pillar_map_size=512 --ckpt_path=/path/to/checkpoints --data_path=/path/to/data --model_dir=/path/to/results` If you find this repo useful for your research, please consider citing the paper ``` @inproceedings{ wang2020, title={Pillar-based Object Detection for Autonomous Driving}, author={Wang, Yue and Fathi, Alireza and Kundu, Abhijit and Ross, David A. and Pantofaru, Caroline and Funkhouser, Thomas A. and Solomon, Justin M.}, booktitle={The European Conference on Computer Vision ({ECCV})}, year={2020} } ```