# Yolo_Nano2 **Repository Path**: hdfsun/Yolo_Nano2 ## Basic Information - **Project Name**: Yolo_Nano2 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyTorch-YOLO_Nano A minimal PyTorch implementation of YOLO_Nano - [Yolo_Nano](https://arxiv.org/abs/1910.01271) - [Bag of Freebies for Training Object Detection Neural Networks](https://arxiv.org/abs/1902.04103v3) #### Trick In here I have done [Bag of Freebies for Training Object Detection Neural Networks](https://arxiv.org/abs/1902.04103v3) tell us that fixup in object detection can increase the mAP, So I realize it and test in result. - [x] Data Augmentation - [x] Fixup - [x] Cosine lr decay - [x] Warm up - [ ] multi-GPU #### Download COCO $ cd data/ $ bash get_coco_dataset.sh ## Module Pipeline ![Pipeline](assets/structure.png) ## training ```bash bash train.sh Better Para: --epochs 120 --batch_size 8 --model_def ./config/yolo-nano_person.cfg --lr 2.5e-4 --fix_up True --lr_policy cosine ``` ## Testing ```bash python test.py --data_config ./config/coco_person.data --model_def ./config/yolo-nano_person.cfg --weights_path [checkpoint path] ``` ## Result In this engineer we only train our model using coco-train person class we compare with yolov-3,yolo-tiny. We got competitive results. Methods |mAP@50|mAP|weights|FPS| Model :--------------:|:--:|:--:|:--: |:--: |:--: yolov3(paper) | 74.4 |40.3 | 204.8M| 28.6FPS |[Google Disk](https://pjreddie.com/media/files/yolov3.weights) yolov3-tiny(paper) | 38.8 |15.6 | 35.4M | 45FPS |[Google Disk](https://pjreddie.com/media/files/yolov3-tiny.weights) yolo-nano | 55.6 |27.7 | 22.0M | 40FPS |[Baidu WebDisk](https://pan.baidu.com/s/1Rp0is2LqA91XwjRc41mGaw) Baidu WebDisk Key: p2j3 ## Ablation Result Augmentation| fixup | mAP :--------------:|:--:|:--: No|No|54.3 Yes|No|53.9 No|YES|55.6 YES|YES|54.8 ## Inference Result ![Pipeline](assets/show.jpg)