# yolo_nano **Repository Path**: hdfsun/yolo_nano ## Basic Information - **Project Name**: yolo_nano - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-23 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Introduction YOLO nano is from this [paper](https://arxiv.org/abs/1910.01271). # TODO Since I'm too busy at the end of the semester, I will continue working on this project after my exams. - [x] Finish a draft version of implementation - [x] Add README - [x] Add checkpoint support - [x] Add COCO dataset support (Code still needs cleaning. I'm working on it.) - [x] Add _multi scale_ and _horizontal flip_ transforms - [x] Reconstruct the code of visualizer - [x] Add val and test - [ ] Add VOC support - [ ] Test accuracy # Installation ```bash git clone https://github.com/liux0614/yolo_nano pip3 install -r requirements.txt ``` # COCO ## Project Structure
root/
results/
datasets/
coco/
images/
train/
val/
annotation/
instances_train2017.json
instances_val2017.json
## Train
To use COCO dataset loader, _pycocotools_ should be installed via the following command.
```bash
pip install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"
```
To train on COCO dataset:
```bash
python3 main.py --dataset_path datasets/coco/images --annotation_path datasets/coco/annotation/instances_train2017.json
--dataset coco --lr 0.0001 --conf_thres 0.8 --nms_thres 0.5
```