# pytorch_mpiigaze **Repository Path**: hechengquan/pytorch_mpiigaze ## Basic Information - **Project Name**: pytorch_mpiigaze - **Description**: A PyTorch implementation of MPIIGaze - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 1 - **Created**: 2021-11-16 - **Last Updated**: 2022-11-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyTorch implementation of MPIIGaze ## Requirements * Python 3.6.3 * PyTorch * torchvision * [tensorboard-pytorch]( https://github.com/lanpa/tensorboard-pytorch ) (optional) * OpenCV ## Download the dataset and preprocess it ``` $ wget http://datasets.d2.mpi-inf.mpg.de/MPIIGaze/MPIIGaze.tar.gz $ tar xzvf MPIIGaze.tar.gz $ python preprocess_data.py --dataset MPIIGaze --outdir data ``` ## Usage ``` $ python -u main.py --arch lenet --dataset data --test_id 0 --outdir results/00 ``` ## Results | Model | Mean Test Angle Error [degree] | Training Time | |:----------------|:------------------------------:|--------------:| | LeNet | 6.43 | 3m40s | | ResNet-preact-8 | 5.78 | 7m27s | ``` $ python -u main.py --arch lenet --dataset data --test_id 0 --outdir results/lenet/00 --batch_size 32 --base_lr 0.01 --momentum 0.9 --nesterov True --weight_decay 1e-4 --epochs 40 --milestones '[30, 35]' --lr_decay 0.1 ``` ![](figures/lenet.png) ``` $ python -u main.py --arch resnet_preact --dataset data --test_id 0 --outdir results/resnet_preact/00 --batch_size 32 --base_lr 0.1 --momentum 0.9 --nesterov True --weight_decay 1e-4 --epochs 40 --milestones '[30, 35]' --lr_decay 0.1 ``` ![](figures/resnet_preact_8.png) ## References * Xucong Zhang and Yusuke Sugano and Mario Fritz and Bulling, Andreas, "Appearance-based Gaze Estimation in the Wild," Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015 [arXiv:1504.02863]( https://arxiv.org/abs/1504.02863 ), [Project Page]( https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/appearance-based-gaze-estimation-in-the-wild/ ) * Xucong Zhang and Yusuke Sugano and Mario Fritz and Bulling, Andreas, "MPIIGaze: Real-World Dataset and Deep Appearance-Based Gaze Estimation," [arXiv:1711.09017]( https://arxiv.org/abs/1711.09017 )