# design-pattern **Repository Path**: hellohxq/design-pattern ## Basic Information - **Project Name**: design-pattern - **Description**: 设计模式 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-01-12 - **Last Updated**: 2023-01-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 设计模式 ## 结构型 ### 代理模式 #### 概述 由于某些原因需要给某对象提供一个代理以控制对该对象的访问。这时,访问对象不适合或者不能直接引用目标对象,代理对象作为访问对象和目标对象之间的中介。 Java中的代理按照代理类生成时机不同又分为静态代理和动态代理。静态代理代理类在编译期就生成,而动态代理代理类则是在Java运行时动态生成。动态代理又有JDK代理和CGLib代理两种。 #### 结构 代理(Proxy)模式分为三种角色: - 抽象主题(Subject)类: 通过接口或抽象类声明真实主题和代理对象实现的业务方法。 - 真实主题(Real Subject)类: 实现了抽象主题中的具体业务,是代理对象所代表的真实对象,是最终要引用的对象。 - 代理(Proxy)类 : 提供了与真实主题相同的接口,其内部含有对真实主题的引用,它可以访问、控制或扩展真实主题的功能。 #### 静态代理 我们通过案例来感受一下静态代理。 【例】火车站卖票 如果要买火车票的话,需要去火车站买票,坐车到火车站,排队等一系列的操作,显然比较麻烦。而火车站在多个地方都有代售点,我们去代售点买票就方便很多了。这个例子其实就是典型的代理模式,火车站是目标对象,代售点是代理对象。类图如下: ![静态代理](img/静态代理.png) 代码如下: ```java //卖票接口 public interface SellTickets { void sell(); } //火车站 火车站具有卖票功能,所以需要实现SellTickets接口 public class TrainStation implements SellTickets { public void sell() { System.out.println("火车站卖票"); } } //代售点 public class ProxyPoint implements SellTickets { private TrainStation station = new TrainStation(); public void sell() { System.out.println("代理点收取一些服务费用"); station.sell(); } } //测试类 public class Client { public static void main(String[] args) { ProxyPoint pp = new ProxyPoint(); pp.sell(); } } ``` 从上面代码中可以看出测试类直接访问的是ProxyPoint类对象,也就是说ProxyPoint作为访问对象和目标对象的中介。同时也对sell方法进行了增强(代理点收取一些服务费用)。 #### JDK动态代理 接下来我们使用动态代理实现上面案例,先说说JDK提供的动态代理。Java中提供了一个动态代理类Proxy,Proxy并不是我们上述所说的代理对象的类,而是提供了一个创建代理对象的静态方法(newProxyInstance方法)来获取代理对象。 代码如下: ```java //卖票接口 public interface SellTickets { void sell(); } //火车站 火车站具有卖票功能,所以需要实现SellTickets接口 public class TrainStation implements SellTickets { public void sell() { System.out.println("火车站卖票"); } } //代理工厂,用来创建代理对象 public class ProxyFactory { private TrainStation station = new TrainStation(); public SellTickets getProxyObject() { //使用Proxy获取代理对象 /* newProxyInstance()方法参数说明: ClassLoader loader : 类加载器,用于加载代理类,使用真实对象的类加载器即可 Class[] interfaces : 真实对象所实现的接口,代理模式真实对象和代理对象实现相同的接口 InvocationHandler h : 代理对象的调用处理程序 */ SellTickets sellTickets = (SellTickets) Proxy.newProxyInstance(station.getClass().getClassLoader(), station.getClass().getInterfaces(), new InvocationHandler() { /* InvocationHandler中invoke方法参数说明: proxy : 代理对象 method : 对应于在代理对象上调用的接口方法的 Method 实例 args : 代理对象调用接口方法时传递的实际参数 */ public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { System.out.println("代理点收取一些服务费用(JDK动态代理方式)"); //执行真实对象 Object result = method.invoke(station, args); return result; } }); return sellTickets; } } //测试类 public class Client { public static void main(String[] args) { //获取代理对象 ProxyFactory factory = new ProxyFactory(); SellTickets proxyObject = factory.getProxyObject(); proxyObject.sell(); } } ``` 使用了动态代理,我们思考下面问题: - ProxyFactory是代理类吗? ProxyFactory不是代理模式中所说的代理类,而代理类是程序在运行过程中动态的在内存中生成的类。通过阿里巴巴开源的 Java 诊断工具(Arthas【阿尔萨斯】)查看代理类的结构: ```java package com.sun.proxy; import com.itheima.proxy.dynamic.jdk.SellTickets; import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.lang.reflect.Proxy; import java.lang.reflect.UndeclaredThrowableException; public final class $Proxy0 extends Proxy implements SellTickets { private static Method m1; private static Method m2; private static Method m3; private static Method m0; public $Proxy0(InvocationHandler invocationHandler) { super(invocationHandler); } static { try { m1 = Class.forName("java.lang.Object").getMethod("equals", Class.forName("java.lang.Object")); m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]); m3 = Class.forName("com.itheima.proxy.dynamic.jdk.SellTickets").getMethod("sell", new Class[0]); m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]); return; } catch (NoSuchMethodException noSuchMethodException) { throw new NoSuchMethodError(noSuchMethodException.getMessage()); } catch (ClassNotFoundException classNotFoundException) { throw new NoClassDefFoundError(classNotFoundException.getMessage()); } } public final boolean equals(Object object) { try { return (Boolean)this.h.invoke(this, m1, new Object[]{object}); } catch (Error | RuntimeException throwable) { throw throwable; } catch (Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final String toString() { try { return (String)this.h.invoke(this, m2, null); } catch (Error | RuntimeException throwable) { throw throwable; } catch (Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final int hashCode() { try { return (Integer)this.h.invoke(this, m0, null); } catch (Error | RuntimeException throwable) { throw throwable; } catch (Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } public final void sell() { try { this.h.invoke(this, m3, null); return; } catch (Error | RuntimeException throwable) { throw throwable; } catch (Throwable throwable) { throw new UndeclaredThrowableException(throwable); } } } ``` 从上面的类中,我们可以看到以下几个信息: - 代理类($Proxy0)实现了SellTickets。这也就印证了我们之前说的真实类和代理类实现同样的接口。 - 代理类($Proxy0)将我们提供了的匿名内部类对象传递给了父类。 - 动态代理的执行流程是什么样? 下面是摘取的重点代码: ```java //程序运行过程中动态生成的代理类 public final class $Proxy0 extends Proxy implements SellTickets { private static Method m3; public $Proxy0(InvocationHandler invocationHandler) { super(invocationHandler); } static { m3 = Class.forName("com.itheima.proxy.dynamic.jdk.SellTickets").getMethod("sell", new Class[0]); } public final void sell() { this.h.invoke(this, m3, null); } } //Java提供的动态代理相关类 public class Proxy implements java.io.Serializable { protected InvocationHandler h; protected Proxy(InvocationHandler h) { this.h = h; } } //代理工厂类 public class ProxyFactory { private TrainStation station = new TrainStation(); public SellTickets getProxyObject() { SellTickets sellTickets = (SellTickets) Proxy.newProxyInstance(station.getClass().getClassLoader(), station.getClass().getInterfaces(), new InvocationHandler() { public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { System.out.println("代理点收取一些服务费用(JDK动态代理方式)"); Object result = method.invoke(station, args); return result; } }); return sellTickets; } } //测试访问类 public class Client { public static void main(String[] args) { //获取代理对象 ProxyFactory factory = new ProxyFactory(); SellTickets proxyObject = factory.getProxyObject(); proxyObject.sell(); } } ``` 执行流程如下: 1. 在测试类中通过代理对象调用sell()方法 2. 根据多态的特性,执行的是代理类($Proxy0)中的sell()方法 3. 代理类($Proxy0)中的sell()方法中又调用了InvocationHandler接口的子实现类对象的invoke方法 4. invoke方法通过反射执行了真实对象所属类(TrainStation)中的sell()方法 #### CGLIB动态代理 同样是上面的案例,我们再次使用CGLIB代理实现。 如果没有定义SellTickets接口,只定义了TrainStation(火车站类)。很显然JDK代理是无法使用了,因为JDK动态代理要求必须定义接口,对接口进行代理。 CGLIB是一个功能强大,高性能的代码生成包。它为没有实现接口的类提供代理,为JDK的动态代理提供了很好的补充。 CGLIB是第三方提供的包,所以需要引入jar包的坐标: ```xml cglib cglib 2.2.2 ``` 代码如下: ```java //火车站 public class TrainStation { public void sell() { System.out.println("火车站卖票"); } } //代理工厂 public class ProxyFactory implements MethodInterceptor { private TrainStation target = new TrainStation(); public TrainStation getProxyObject() { //创建Enhancer对象,类似于JDK动态代理的Proxy类,下一步就是设置几个参数 Enhancer enhancer =new Enhancer(); //设置父类的字节码对象 enhancer.setSuperclass(target.getClass()); //设置回调函数 enhancer.setCallback(this); //创建代理对象 TrainStation obj = (TrainStation) enhancer.create(); return obj; } /* intercept方法参数说明: o : 代理对象 method : 真实对象中的方法的Method实例 args : 实际参数 methodProxy :代理对象中的方法的method实例 */ public TrainStation intercept(Object o, Method method, Object[] args, MethodProxy methodProxy) throws Throwable { System.out.println("代理点收取一些服务费用(CGLIB动态代理方式)"); TrainStation result = (TrainStation) methodProxy.invokeSuper(o, args); return result; } } //测试类 public class Client { public static void main(String[] args) { //创建代理工厂对象 ProxyFactory factory = new ProxyFactory(); //获取代理对象 TrainStation proxyObject = factory.getProxyObject(); proxyObject.sell(); } } ``` #### 三种代理的对比 - jdk代理和CGLIB代理 使用CGLib实现动态代理,CGLib底层采用ASM字节码生成框架,使用字节码技术生成代理类,在JDK1.6之前比使用Java反射效率要高。唯一需要注意的是,CGLib不能对声明为final的类或者方法进行代理,因为CGLib原理是动态生成被代理类的子类。 在JDK1.6、JDK1.7、JDK1.8逐步对JDK动态代理优化之后,在调用次数较少的情况下,JDK代理效率高于CGLib代理效率,只有当进行大量调用的时候,JDK1.6和JDK1.7比CGLib代理效率低一点,但是到JDK1.8的时候,JDK代理效率高于CGLib代理。所以如果有接口使用JDK动态代理,如果没有接口使用CGLIB代理。 - 动态代理和静态代理 动态代理与静态代理相比较,最大的好处是接口中声明的所有方法都被转移到调用处理器一个集中的方法中处理(InvocationHandler.invoke)。这样,在接口方法数量比较多的时候,我们可以进行灵活处理,而不需要像静态代理那样每一个方法进行中转。 如果接口增加一个方法,静态代理模式除了所有实现类需要实现这个方法外,所有代理类也需要实现此方法。增加了代码维护的复杂度。而动态代理不会出现该问题 #### 优缺点 **优点:** - 代理模式在客户端与目标对象之间起到一个中介作用和保护目标对象的作用; - 代理对象可以扩展目标对象的功能; - 代理模式能将客户端与目标对象分离,在一定程度上降低了系统的耦合度; **缺点:** - 增加了系统的复杂度; #### 使用场景 - 远程(Remote)代理 本地服务通过网络请求远程服务。为了实现本地到远程的通信,我们需要实现网络通信,处理其中可能的异常。为良好的代码设计和可维护性,我们将网络通信部分隐藏起来,只暴露给本地服务一个接口,通过该接口即可访问远程服务提供的功能,而不必过多关心通信部分的细节。 - 防火墙(Firewall)代理 当你将浏览器配置成使用代理功能时,防火墙就将你的浏览器的请求转给互联网;当互联网返回响应时,代理服务器再把它转给你的浏览器。 - 保护(Protect or Access)代理 控制对一个对象的访问,如果需要,可以给不同的用户提供不同级别的使用权限。 ### 适配器模式 #### 概述 如果去欧洲国家去旅游的话,他们的插座如下图最左边,是欧洲标准。而我们使用的插头如下图最右边的。因此我们的笔记本电脑,手机在当地不能直接充电。所以就需要一个插座转换器,转换器第1面插入当地的插座,第2面供我们充电,这样使得我们的插头在当地能使用。生活中这样的例子很多,手机充电器(将220v转换为5v的电压),读卡器等,其实就是使用到了适配器模式。 ![](img/转接头.png) **定义:** ​ 将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。 ​ 适配器模式分为类适配器模式和对象适配器模式,前者类之间的耦合度比后者高,且要求程序员了解现有组件库中的相关组件的内部结构,所以应用相对较少些。 #### 结构 适配器模式(Adapter)包含以下主要角色: - 目标(Target)接口:当前系统业务所期待的接口,它可以是抽象类或接口。 - 适配者(Adaptee)类:它是被访问和适配的现存组件库中的组件接口。 - 适配器(Adapter)类:它是一个转换器,通过继承或引用适配者的对象,把适配者接口转换成目标接口,让客户按目标接口的格式访问适配者。 #### 类适配器模式 实现方式:定义一个适配器类来实现当前系统的业务接口,同时又继承现有组件库中已经存在的组件。 【例】读卡器 现有一台电脑只能读取SD卡,而要读取TF卡中的内容的话就需要使用到适配器模式。创建一个读卡器,将TF卡中的内容读取出来。 类图如下: ![](img/适配器模式.png) 代码如下: ```java //SD卡的接口 public interface SDCard { //读取SD卡方法 String readSD(); //写入SD卡功能 void writeSD(String msg); } //SD卡实现类 public class SDCardImpl implements SDCard { public String readSD() { String msg = "sd card read a msg :hello word SD"; return msg; } public void writeSD(String msg) { System.out.println("sd card write msg : " + msg); } } //电脑类 public class Computer { public String readSD(SDCard sdCard) { if(sdCard == null) { throw new NullPointerException("sd card null"); } return sdCard.readSD(); } } //TF卡接口 public interface TFCard { //读取TF卡方法 String readTF(); //写入TF卡功能 void writeTF(String msg); } //TF卡实现类 public class TFCardImpl implements TFCard { public String readTF() { String msg ="tf card read msg : hello word tf card"; return msg; } public void writeTF(String msg) { System.out.println("tf card write a msg : " + msg); } } //定义适配器类(SD兼容TF) public class SDAdapterTF extends TFCardImpl implements SDCard { public String readSD() { System.out.println("adapter read tf card "); return readTF(); } public void writeSD(String msg) { System.out.println("adapter write tf card"); writeTF(msg); } } //测试类 public class Client { public static void main(String[] args) { Computer computer = new Computer(); SDCard sdCard = new SDCardImpl(); System.out.println(computer.readSD(sdCard)); System.out.println("------------"); SDAdapterTF adapter = new SDAdapterTF(); System.out.println(computer.readSD(adapter)); } } ``` 类适配器模式违背了合成复用原则。类适配器是客户类有一个接口规范的情况下可用,反之不可用。 #### 对象适配器模式 实现方式:对象适配器模式可釆用将现有组件库中已经实现的组件引入适配器类中,该类同时实现当前系统的业务接口。 【例】读卡器 我们使用对象适配器模式将读卡器的案例进行改写。类图如下: ![](img/对象适配器模式.png) 代码如下: 类适配器模式的代码,我们只需要修改适配器类(SDAdapterTF)和测试类。 ```java //创建适配器对象(SD兼容TF) public class SDAdapterTF implements SDCard { private TFCard tfCard; public SDAdapterTF(TFCard tfCard) { this.tfCard = tfCard; } public String readSD() { System.out.println("adapter read tf card "); return tfCard.readTF(); } public void writeSD(String msg) { System.out.println("adapter write tf card"); tfCard.writeTF(msg); } } //测试类 public class Client { public static void main(String[] args) { Computer computer = new Computer(); SDCard sdCard = new SDCardImpl(); System.out.println(computer.readSD(sdCard)); System.out.println("------------"); TFCard tfCard = new TFCardImpl(); SDAdapterTF adapter = new SDAdapterTF(tfCard); System.out.println(computer.readSD(adapter)); } } ``` > 注意:还有一个适配器模式是接口适配器模式。当不希望实现一个接口中所有的方法时,可以创建一个抽象类Adapter ,实现所有方法。而此时我们只需要继承该抽象类即可。 #### 应用场景 - 以前开发的系统存在满足新系统功能需求的类,但其接口同新系统的接口不一致。 - 使用第三方提供的组件,但组件接口定义和自己要求的接口定义不同。 #### JDK源码解析 Reader(字符流)、InputStream(字节流)的适配使用的是InputStreamReader。 InputStreamReader继承自java.io包中的Reader,对他中的抽象的未实现的方法给出实现。如: ```java public int read() throws IOException { return sd.read(); } public int read(char cbuf[], int offset, int length) throws IOException { return sd.read(cbuf, offset, length); } ``` 如上代码中的sd(StreamDecoder类对象),在Sun的JDK实现中,实际的方法实现是对sun.nio.cs.StreamDecoder类的同名方法的调用封装。类结构图如下: ![](img/适配器模式-jdk源码解析.png) 从上图可以看出: - InputStreamReader是对同样实现了Reader的StreamDecoder的封装。 - StreamDecoder不是Java SE API中的内容,是Sun JDK给出的自身实现。但我们知道他们对构造方法中的字节流类(InputStream)进行封装,并通过该类进行了字节流和字符流之间的解码转换。 结论: ​ 从表层来看,InputStreamReader做了InputStream字节流类到Reader字符流之间的转换。而从如上Sun JDK中的实现类关系结构中可以看出,是StreamDecoder的设计实现在实际上采用了适配器模式。