# MyCode **Repository Path**: henry0904/my-code ## Basic Information - **Project Name**: MyCode - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-12-02 - **Last Updated**: 2024-12-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Neural Structural Correspondence Learning for Domain Adaptation. Authors: Yftah Ziser, Roi Reichart (Technion - Israel Institute of Technology). This is a code repository used to generate the results appearing in [Neural Structural Correspondence Learning for Domain Adaptation](https://www.aclweb.org/anthology/K/K17/K17-1040.pdf). If you use this implementation in your article, please cite :) ```bib @InProceedings{ziser-reichart:2017:CoNLL, author = {Ziser, Yftah and Reichart, Roi}, title = {Neural Structural Correspondence Learning for Domain Adaptation}, booktitle = {Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017)}, year = {2017}, pages = {400--410}, } ``` You can find detailed instructions for using the AE-SCL and AE-SCL-SR models(including Prerequisites) in their corresponding directories. You can find an explained example in model_name\run.py, e.g., AE-SCL-SR\run.py : ```python import tr import sentiment if __name__ == '__main__': domain = [] domain.append("books") domain.append("kitchen") domain.append("dvd") domain.append("electronics") # making a shared representation for both source domain and target domain # first param: the source domain # second param: the target domain # third param: number of pivots # fourth param: appearance threshold for pivots in source and target domain # fifth parameter: the embedding dimension, identical to the hidden layer dimension tr.train(domain[0], domain[1], 100, 10, 500) # learning the classifier in the source domain and testing in the target domain # the results, weights and all the meta-data will appear in source-target directory # first param: the source domain # second param: the target domain # third param: number of pivots # fourth param: appearance threshold for pivots in source and target domain # fifth param: the embedding dimension identical to the hidden layer dimension # sixth param: we use logistic regression as our classifier, it takes the const C for its learning sentiment.sent(domain[0], domain[1], 100, 10, 500, 0.1) ```