# ACMNet **Repository Path**: henrydai/ACMNet ## Basic Information - **Project Name**: ACMNet - **Description**: ACMNet官方代码 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-05-24 - **Last Updated**: 2022-05-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ACMNet This is the Pytorch implementation of our work on depth completion. **S. Zhao, M. Gong, H. Fu and D. Tao. Adaptive Context-Aware Multi-Modal Network for Depth Completion. (IEEE Trans. Image Process.) [Arxiv](https://arxiv.org/pdf/2008.10833.pdf)(Early Version) [IEEE](https://ieeexplore.ieee.org/abstract/document/9440471/)(Final Version)** ## Environment 1. Python 3.6 2. PyTorch 1.2.0 3. CUDA 10.0 4. Ubuntu 16.04 5. Opencv-python 6. pip install pointlib/. ## Datasets [KITTI](http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion) Prepare the dataset according to the datalists (*.txt in [datasets](./datasets)) ``` datasets |----kitti |----depth_selection |----val_selection_cropped |----... |----test_depth_completion_anonymous |----... |----rgb |----2011_09_26 |----... |----train |----2011_09_26_drive_0001_sync |----... |----val |----2011_09_26_drive_0002_sync |----... ``` ## Training run ``` bash run_train.sh ``` ## Test run ``` bash run_eval.sh (sval.txt for selected_validation, val for validation) or bash run_test.sh (for submission) ``` ## Citation ``` @article{zhao2021adaptive, title={Adaptive context-aware multi-modal network for depth completion}, author={Zhao, Shanshan and Gong, Mingming and Fu, Huan and Tao, Dacheng}, journal={IEEE Transactions on Image Processing}, year={2021}, publisher={IEEE} } ``` ## Contact Shanshan Zhao: szha4333@uni.sydney.edu.au or sshan.zhao00@gmail.com