# Remote-Sensing-UAV-image-classification **Repository Path**: hf-models/Remote-Sensing-UAV-image-classification ## Basic Information - **Project Name**: Remote-Sensing-UAV-image-classification - **Description**: Remote-Sensing-UAV-image-classification 是一个用于遥感图像分类的模型。 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2023-10-26 - **Last Updated**: 2024-06-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README --- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer - Remote-Sensing metrics: - accuracy model-index: - name: Remote-Sensing-Classification-image-classification results: [] datasets: - jonathan-roberts1/RSSCN7 --- # Remote-Sensing-UAV-image-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an [jonathan-roberts1/RSSCN7](https://huggingface.co/datasets/jonathan-roberts1/RSSCN7) dataset. It achieves the following results on the evaluation set: - Loss: 0.1593 - Accuracy: 0.9589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3922 | 0.71 | 100 | 0.4227 | 0.8821 | | 0.2986 | 1.43 | 200 | 0.3142 | 0.9089 | | 0.1109 | 2.14 | 300 | 0.2056 | 0.9518 | | 0.0864 | 2.86 | 400 | 0.2472 | 0.9375 | | 0.0397 | 3.57 | 500 | 0.1593 | 0.9589 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1