# SweRankEmbed-Large **Repository Path**: hf-models/SweRankEmbed-Large ## Basic Information - **Project Name**: SweRankEmbed-Large - **Description**: Mirror of https://huggingface.co/Salesforce/SweRankEmbed-Large - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-10-19 - **Last Updated**: 2025-10-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README --- license: cc-by-nc-4.0 base_model: - Alibaba-NLP/gte-Qwen2-7B-instruct --- `SweRankEmbed-Large` is a 7B bi-encoder for code retrieval. It significantly outperforms other embedding models on the issue localization task. The model has been trained on large-scale issue localization data collected from public python github repositories. Check out our [blog post](https://gangiswag.github.io/SweRank/) and [paper](https://arxiv.org/abs/2505.07849) for more details! You can combine `SweRankEmbed` with our [`SweRankLLM-Small`]() or [`SweRankLLM-Large`]() rerankers for even higher quality ranking performance. Link to code: [https://github.com/gangiswag/SweRank](https://github.com/gangiswag/SweRank) ## Performance SweRank models show SOTA localization performance on a variety of benchmarks like SWE-Bench-Lite and LocBench, considerably out-performing agent-based approaches relying on Claude-3.5 | Model Name | SWE-Bench-Lite Func@10 | LocBench Func@15 | ------------------------------------------------------------------- | -------------------------------- | -------------------------------- | | OpenHands (Claude 3.5) | 70.07 | 59.29 | | LocAgent (Claude 3.5) | 77.37 | 60.71 | | CodeRankEmbed (137M) | 58.76 | 50.89 | | GTE-Qwen2-7B-Instruct (7B)| 70.44 | 57.14 | | SweRankEmbed-Small (137M) | 74.45 | 63.39 | | SweRankEmbed-Large (7B) | 82.12 | 67.32 | | + GPT-4.1 reranker | 87.96 | 74.64 | | + SweRankLLM-Small (7B) reranker | 86.13 | 74.46 | | + SweRankLLM-Large (32B) reranker | 88.69 | 76.25 | ## Requirements ```shell transformers>=4.39.2 flash_attn>=2.5.6 ``` ## Usage with Sentence-Transformers ```python from from sentence_transformers import SentenceTransformer model = SentenceTransformer("Salesforce/SweRankEmbed-Large", trust_remote_code=True) # In case you want to reduce the maximum length: model.max_seq_length = 8192 queries = ['Calculate the n-th factorial'] documents = ['def fact(n):\n if n < 0:\n raise ValueError\n return 1 if n == 0 else n * fact(n - 1)'] query_embeddings = model.encode(queries, prompt_name="query") document_embeddings = model.encode(documents) scores = query_embeddings @ document_embeddings.T for query, query_scores in zip(queries, scores): doc_score_pairs = list(zip(documents, query_scores)) doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) # Output passages & scores print("Query:", query) for document, score in doc_score_pairs: print(score, document) ``` Observe the `config_sentence_transformers.json` to see all pre-built prompt names. ## Usage with Huggingface Transformers **Important**: the query prompt must include the following task instruction prefix: "*Instruct: Given a github issue, identify the code that needs to be changed to fix the issue.\nQuery: *" ```python import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery: {query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a github issue, identify the code that needs to be changed to fix the issue.' tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Large', trust_remote_code=True) model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Large', trust_remote_code=True) model.eval() max_length = 8192 queries = ['Calculate the n-th factorial'] queries_with_prefix = [get_detailed_instruct(task, query) for query in queries] query_inputs = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=max_length) documents = ['def fact(n):\n if n < 0:\n raise ValueError\n return 1 if n == 0 else n * fact(n - 1)'] document_inputs = tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=max_length) # Compute token embeddings with torch.no_grad(): query_embeddings = last_token_pool(model(**query_inputs).last_hidden_state, query_inputs["attention_mask"]]) document_embeddings = last_token_pool(model(**document_inputs).last_hidden_state, document_inputs["attention_mask"]]) # normalize embeddings query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1) document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1) scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1)) for query, query_scores in zip(queries, scores): doc_score_pairs = list(zip(documents, query_scores)) doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores print("Query:", query) for document, score in doc_score_pairs: print(score, document) ``` ## Citation If you find this model work useful in your research, please consider citing our paper: ``` @article{reddy2025swerank, title={SweRank: Software Issue Localization with Code Ranking}, author={Reddy, Revanth Gangi and Suresh, Tarun and Doo, JaeHyeok and Liu, Ye and Nguyen, Xuan Phi and Zhou, Yingbo and Yavuz, Semih and Xiong, Caiming and Ji, Heng and Joty, Shafiq}, journal={arXiv preprint arXiv:2505.07849}, year={2025} } ```