# MapTR
**Repository Path**: hihefei/MapTR
## Basic Information
- **Project Name**: MapTR
- **Description**: MapTR ICLR2023
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2023-07-18
- **Last Updated**: 2025-01-15
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
MapTR 
An End-to-End Framework for Online Vectorized HD Map Construction
[Bencheng Liao](https://github.com/LegendBC)
1,2,3 \*, [Shaoyu Chen](https://scholar.google.com/citations?user=PIeNN2gAAAAJ&hl=en&oi=sra)
1,3 \*, [Yunchi Zhang](https://github.com/zyc10ud)
1,3 , [Bo Jiang](https://github.com/rb93dett)
1,3 ,[Tianheng Cheng](https://scholar.google.com/citations?user=PH8rJHYAAAAJ&hl=zh-CN)
1,3, [Qian Zhang](https://scholar.google.com/citations?user=pCY-bikAAAAJ&hl=zh-CN)
3, [Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu/)
1, [Chang Huang](https://scholar.google.com/citations?user=IyyEKyIAAAAJ&hl=zh-CN)
3, [Xinggang Wang](https://xwcv.github.io)
1 :email:
1 School of EIC, HUST,
2 Institute of Artificial Intelligence, HUST,
3 Horizon Robotics
(\*) equal contribution, (
:email:) corresponding author.
ArXiv Preprint ([arXiv 2208.14437](https://arxiv.org/abs/2208.14437))
[openreview ICLR'23](https://openreview.net/forum?id=k7p_YAO7yE), accepted as **ICLR Spotlight**
extended ArXiv Preprint MapTRv2 ([arXiv 2308.05736](https://arxiv.org/abs/2308.05736)), accepted to [**IJCV 2024**](https://link.springer.com/article/10.1007/s11263-024-02235-z)
#
### News
* **`Oct. 6th, 2024`:** MapTRv2 is accepted to IJCV 2024!
* **`Feb 20th, 2024`:** MapTRv2-based VADv2 is presented on arXiv [paper](https://arxiv.org/pdf/2402.13243) [project page](https://hgao-cv.github.io/VADv2/).
* **`Aug. 31th, 2023`:** initial MapTRv2 is released at ***maptrv2*** branch. Please run `git checkout maptrv2` to use it.
* **`Aug. 14th, 2023`:** As required by many researchers, the code of MapTR-based map annotation framework (VMA) will be released at https://github.com/hustvl/VMA recently.
* **`Aug. 10th, 2023`:** We release [MapTRv2](https://arxiv.org/abs/2308.05736) on Arxiv. MapTRv2 demonstrates much stronger performance and much faster convergence. To better meet the requirement of the downstream planner (like [PDM](https://github.com/autonomousvision/nuplan_garage)), we introduce an extra semantic——centerline (using path-wise modeling proposed by [LaneGAP](https://github.com/hustvl/LaneGAP)). Code & model will be released in late August. Please stay tuned!
* **`May. 12th, 2023`:** MapTR now support various bevencoder, such as [BEVFormer encoder](projects/configs/maptr/maptr_tiny_r50_24e_bevformer.py) and [BEVFusion bevpool](projects\configs\maptr\maptr_tiny_r50_24e_bevpool.py). Check it out!
* **`Apr. 20th, 2023`:** Extending MapTR to a general map annotation framework ([paper](https://arxiv.org/pdf/2304.09807.pdf), [code](https://github.com/hustvl/VMA)), with high flexibility in terms of spatial scale and element type.
* **`Mar. 22nd, 2023`:** By leveraging MapTR, VAD ([paper](https://arxiv.org/abs/2303.12077), [code](https://github.com/hustvl/VAD)) models the driving scene as fully vectorized representation, achieving SoTA end-to-end planning performance!
* **`Jan. 21st, 2023`:** MapTR is accepted to ICLR 2023 as **Spotlight Presentation**!
* **`Nov. 11st, 2022`:** We release an initial version of MapTR.
* **`Aug. 31st, 2022`:** We released our paper on Arxiv. Code/Models are coming soon. Please stay tuned! ☕️
## Introduction