# OrientedRepPoints **Repository Path**: hihefei/OrientedRepPoints ## Basic Information - **Project Name**: OrientedRepPoints - **Description**: csfssdsdsdsdsds - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-07-25 - **Last Updated**: 2023-07-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Oriented RepPoints for Aerial Object Detection > Wentong Li, Yijie Chen, Kaixuan Hu, Jianke Zhu* ([Arxiv](https://arxiv.org/pdf/2105.11111v4.pdf)) # * Based on OrientedRepPoints detector, the **2nd** and **3rd** Places are achieved on the Task 2 and Task 1 respectively in the *“2021 challenge of Learning to Understand Aerial Images([LUAI](https://captain-whu.github.io/LUAI2021/tasks.html))”*. **The detailed codes and introductions about it, please refer to this [repository](https://github.com/hukaixuan19970627/OrientedRepPoints_DOTA) and [知乎](https://zhuanlan.zhihu.com/p/422764914)**. ## Update * The code for [MMRotate](https://github.com/open-mmlab/mmrotate) is available now. * [RepPoints](https://github.com/microsoft/RepPoints) + our **APAA** can obtain **+2.5AP** (36.3 to 38.8) improvement with R-50 on **COCO** dataset for general object detection. # Installation Please refer to ![install.md](https://github.com/LiWentomng/OrientedRepPoints/blob/main/docs/install.md) for installation and dataset preparation. # Getting Started This repo is based on ![mmdetection](https://github.com/open-mmlab/mmdetection). Please see ![getting_started.md](https://github.com/LiWentomng/OrientedRepPoints/blob/main/docs/getting_started.md) for the basic usage. # Results and Models The results on DOTA test set are shown in the table below. More detailed results please see the paper. Model| Backbone |data aug(HSV+Rotation)| mAP | model| log ---- | ----- | ------ |------| ------ | ------ OrientedReppoints| R-50| |75.97 |[model](https://drive.google.com/file/d/13c56u9IFRRdHH-YNmQfqb1y11f7xPfCR/view?usp=sharing) | [log](https://drive.google.com/file/d/1_lrj3gV27iM0v95AnSCRHUZDZWkdJFS_/view?usp=sharing) OrientedReppoints| R-101| |76.52 |[model](https://drive.google.com/file/d/1otXS3w0LVopsBKxyYbyQhF6mFDtTIJFX/view?usp=sharing) | [log](https://drive.google.com/file/d/1MgJ7A9INaP3iocy1MQSS1SA6gyIvnTJX/view?usp=sharing) OrientedReppoints| Swin-Tiny| √ | 78.11|[model](https://drive.google.com/file/d/1B03dBSXU9GFGRM8XiyQo2aw6yGnCgB8r/view?usp=sharing) | [log](https://drive.google.com/file/d/1lt5UkBPVM7am6asySRWohXSRK_tGwxV8/view?usp=sharing) Note: * The pretrained model--*swin_tiny_patch4_window7_224* of [Swin-Tiny](https://github.com/microsoft/Swin-Transformer) for pytorch1.4.0 is [here](https://drive.google.com/file/d/1ad4lxks68vngs_pCaqs9w_L-fGvtR7nQ/view?usp=sharing). * We recommend to use our demo configs with 4 GPUs. * The results are performed on the original DOTA images with 1024x1024 patches. * The scale jitter is employed during training. More details see the paper. The mAOE results on DOTA val set are shown in the table below. Model| Backbone | mAOE | Download ---- | ----- | ------ | ------ OrientedReppoints| R-50| 5.93° |[model](https://drive.google.com/file/d/1lGHehF57ObkAt0i9FITkp5yS6ULBZQjx/view?usp=sharing) Note:Orientation error evaluation (mAOE) is calculated on the val subset(only train subset for training). # Visual results The visualization code for oriented bounding boxes and learning points is ![here](https://github.com/LiWentomng/OrientedRepPoints/blob/main/tools/parse_pkl/show_learning_points_and_boxes.py). * Oriented bounding box # Citation ```shell @inproceeding{orientedreppoints, title="Oriented RepPoints for Aerial Object Detection.", author="Wentong {Li}, Yijie {Chen}, Kaixuan {Hu}, Jianke {Zhu}.", journal="The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)", year="2022" } ``` # Acknowledgements Here are some great resources we benefit. We would espeicially thank the authors of: [MMdetection](https://github.com/open-mmlab/mmdetection) [RepPoints](https://github.com/microsoft/RepPoints) [AerialDetection](https://github.com/dingjiansw101/AerialDetection) [BeyondBoundingBox](https://github.com/sdl-guozonghao/beyondboundingbox)