# meta_trackers **Repository Path**: hj_0746/meta_trackers ## Basic Information - **Project Name**: meta_trackers - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-05 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MetaTrackers ## 0. Prerequisites [PyTorch](http://pytorch.org/) >= v0.2.0 ## 0. Dataset download Download dataset([OTB](https://sites.google.com/site/benchmarkpami/), [VOT](http://www.votchallenge.net/)) and prepared the link to the dataset in $(meta_trackers_root)/dataset/ directory. ```bash $(meta_trackers_root)/dataset/VID $(meta_trackers_root)/dataset/OTB $(meta_trackers_root)/dataset/vot2013 $(meta_trackers_root)/dataset/vot2015 $(meta_trackers_root)/dataset/vot2016 ``` ## 0. Prepare dataset meta files I already prepared all necessary meta-files for ILSVRC VID dataset, OTB, VOT dataset. Either you use them or you could generate via scripts in $(meta_trackers_root)/dataset/ directory. ```bash $(meta_trackers_root)/dataset/ilsvrc_train.json # meta file for loading ILSVRC VID dataset to meta-train. $(meta_trackers_root)/dataset/vot-otb.pkl # meta file for loading VOT dataset to meta-train(for OTB experiments) $(meta_trackers_root)/dataset/otb-vot.pkl # meta file for loading OTB dataset to meta-train(for VOT experiments) ``` Also need to download imagenet pretrained models(our base feature extractors) into $(meta_trackers_root)/meta_crest(and meta_sdnet)/models/. (We used the same networks that original trackers used. For meta_sdnet - [imagenet-vgg-m.mat](http://www.vlfeat.org/matconvnet/models/imagenet-vgg-m.mat), and for meta_crest - [imagenet-vgg-verydeep-16.mat](http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-16.mat)) ## 1. Meta-Training You can skip this step and download pretrain models, and use them to test the trackers. If you want to meta-train MetaCREST trackers, ```bash $(meta_trackers_root)/meta_crest/meta_pretrain$> python train_meta_init.py -e OTB # for OTB experiments, for VOT use -e VOT ``` To meta-train MetaSDNet trackers, ```bash $(meta_trackers_root)/meta_sdnet/meta_pretrain$> python train_meta_init.py -e OTB # for OTB experiments, for VOT use -e VOT ``` ## 2. Downloading pretrained models We provide pretrained models for both meta trackers for your convenience. You can download it from following links and locate them in models directory. [$(meta_trackers_root)/meta_sdnet/models/meta_init_vot_ilsvrc.pth](https://drive.google.com/file/d/1hQm9pHO_FJDceAcX_DDqoiZvNpXUfJ5D/view?usp=sharing) (~35M) [$(meta_trackers_root)/meta_sdnet/models/meta_init_otb_ilsvrc.pth](https://drive.google.com/file/d/1y5Iqd40G6CrRZTeY2zHybO49qfUmGjXE/view?usp=sharing) (~35M) [$(meta_trackers_root)/meta_crest/models/meta_init_vot_ilsvrc.pth](https://drive.google.com/file/d/1pBiVFaoi1kjK_COnQxZehmLvA59o3PGt/view?usp=sharing) (~59K) [$(meta_trackers_root)/meta_crest/models/meta_init_otb_ilsvrc.pth](https://drive.google.com/file/d/1THmp-FdUPu2lzueSJlXsMOPBpe7QYh2q/view?usp=sharing) (~59K) ## 3. Testing MetaTrackers ```bash $(meta_trackers_root)/meta_crest/meta_tracking$>python run_tracker.py # meta_crest tracker for OTB experiments $(meta_trackers_root)/meta_sdnet/meta_tracking$>python run_tracker.py # meta_sdnet tracker for OTB experiments ``` To run VOT2016 experiments, I provided following VOT integration files. You can use them and run it via VOT2016 toolkit. Please refer to [VOT homepage](http://votchallenge.net/howto/) ```bash $(meta_trackers_root)/meta_crest/meta_tracking/run_tracker_vot.py $(meta_trackers_root)/meta_sdnet/meta_tracking/run_tracker_vot.py ``` ## 4. Evaluations If you used pre-trained models, you should be able to get same results(or small variation due to randomness in trackers) reported in the papers. If you meta-trained the model, you should also be able to get similar results. ```bash $(meta_trackers_root)/meta_crest$> python eval_otb.py $(meta_trackers_root)/meta_sdnet$> python eval_otb.py ``` Similarly, please refer to [VOT homepage](http://votchallenge.net/howto/) for VOT evaluations. I also provided all raw results for both OTB and VOT experiments that used in the paper([meta_crest_result](https://drive.google.com/file/d/18PfjMJ21ldKkBfUQpaa8TK4PHU5lh9mx/view?usp=sharing), [meta_sdnet_result](https://drive.google.com/file/d/10tTaiO2-hyggjKyuwlgTG34bFQkIyxgF/view?usp=sharing)) ## Acknowledgments Many parts of this code are adopted from other related works([pytorch-maml](https://github.com/katerakelly/pytorch-maml), [py-MDNet](https://github.com/HyeonseobNam/py-MDNet), [CREST](https://github.com/ybsong00/CREST-Release)).