# spleeter **Repository Path**: hnaxing/spleeter ## Basic Information - **Project Name**: spleeter - **Description**: 音轨分离软件 spleeter,只需输入一段命令就可以将音乐的人声和各种乐器声分离,支持 mp3、wav、ogg 等常见音频格式 - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: https://www.oschina.net/p/spleeter - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 15 - **Created**: 2019-11-18 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![CircleCI](https://circleci.com/gh/deezer/spleeter/tree/master.svg?style=shield)](https://circleci.com/gh/deezer/spleeter/tree/master) [![PyPI version](https://badge.fury.io/py/spleeter.svg)](https://badge.fury.io/py/spleeter) [![Conda](https://img.shields.io/conda/vn/conda-forge/spleeter)](https://anaconda.org/conda-forge/spleeter) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/spleeter) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deezer/spleeter/blob/master/spleeter.ipynb) ## About **Spleeter** is the [Deezer](https://www.deezer.com/) source separation library with pretrained models written in [Python](https://www.python.org/) and uses [Tensorflow](https://tensorflow.org/). It makes it easy to train source separation model (assuming you have a dataset of isolated sources), and provides already trained state of the art model for performing various flavour of separation : * Vocals (singing voice) / accompaniment separation ([2 stems](https://github.com/deezer/spleeter/wiki/2.-Getting-started#using-2stems-model)) * Vocals / drums / bass / other separation ([4 stems](https://github.com/deezer/spleeter/wiki/2.-Getting-started#using-4stems-model)) * Vocals / drums / bass / piano / other separation ([5 stems](https://github.com/deezer/spleeter/wiki/2.-Getting-started#using-5stems-model)) 2 stems and 4 stems models have state of the art performances on the [musdb](https://sigsep.github.io/datasets/musdb.html) dataset. **Spleeter** is also very fast as it can perform separation of audio files to 4 stems 100x faster than real-time when run on a GPU. We designed **Spleeter** so you can use it straight from [command line](https://github.com/deezer/spleeter/wiki/2.-Getting-started#usage) as well as directly in your own development pipeline as a [Python library](https://github.com/deezer/spleeter/wiki/4.-API-Reference#separator). It can be installed with [Conda](https://github.com/deezer/spleeter/wiki/1.-Installation#using-conda), with [pip](https://github.com/deezer/spleeter/wiki/1.-Installation#using-pip) or be used with [Docker](https://github.com/deezer/spleeter/wiki/2.-Getting-started#using-docker-image). ## Quick start Want to try it out ? Just clone the repository and install a [Conda](https://github.com/deezer/spleeter/wiki/1.-Installation#using-conda) environment to start separating audio file as follows: ```bash git clone https://github.com/Deezer/spleeter conda env create -f spleeter/conda/spleeter-cpu.yaml conda activate spleeter-cpu spleeter separate -i spleeter/audio_example.mp3 -p spleeter:2stems -o output ``` You should get two separated audio files (`vocals.wav` and `accompaniment.wav`) in the `output/audio_example` folder. For a more detailed documentation, please check the [repository wiki](https://github.com/deezer/spleeter/wiki) Want to try it out but don't want to install anything ? we've setup a [Google Colab](https://colab.research.google.com/github/deezer/spleeter/blob/master/spleeter.ipynb) ## Reference - Deezer Research - Source Separation Engine Story - deezer.io blog post: * [English version](https://deezer.io/releasing-spleeter-deezer-r-d-source-separation-engine-2b88985e797e) * [Japanese version](http://dzr.fm/splitterjp) - [Music Source Separation tool with pre-trained models / ISMIR2019 extended abstract](http://archives.ismir.net/ismir2019/latebreaking/000036.pdf) If you use **Spleeter** in your work, please cite: ```BibTeX @misc{spleeter2019, title={Spleeter: A Fast And State-of-the Art Music Source Separation Tool With Pre-trained Models}, author={Romain Hennequin and Anis Khlif and Felix Voituret and Manuel Moussallam}, howpublished={Late-Breaking/Demo ISMIR 2019}, month={November}, note={Deezer Research}, year={2019} } ``` ## License The code of **Spleeter** is MIT-licensed. ## Disclaimer If you plan to use Spleeter on copyrighted material, make sure you get proper authorization from right owners beforehand. ## Note This repository include a demo audio file `audio_example.mp3` which is an excerpt from Slow Motion Dream by Steven M Bryant (c) copyright 2011 Licensed under a Creative Commons Attribution (3.0) license. http://dig.ccmixter.org/files/stevieb357/34740 Ft: CSoul,Alex Beroza & Robert Siekawitch