# skiprnn_pytorch **Repository Path**: hoi_xd/skiprnn_pytorch ## Basic Information - **Project Name**: skiprnn_pytorch - **Description**: this is skip rnn model. - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-06-01 - **Last Updated**: 2022-06-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Skip RNN This repo provides a Pytorch implementation for the [Skip RNN: Learning to Skip State Updates in Recurrent Neural Networks](https://arxiv.org/abs/1708.06834) paper. ## Installation of pytorch The experiments needs installing [Pytorch](http://pytorch.org/) ## Data Three experiments are done in the paper. For the experiment adding_task and frequency discimination the data is automatically generated. For the experiment sequential mnist the data will be downloaded automatically in the data folder at the root directory of skiprnn. ### Todo list: - [x] code custom LSTM, GRU - [x] code skipLSTM, skipGRU - [x] code skipMultiLSTM, skipMultiGRU - [x] added logs and tasks. - [x] check batch normalization inside skip cells - [ ] check results corresponds with the results of the paper. ## Installation $ pip install -r requirements.txt $ python 01_adding_task.py `#Experiment 1` $ python 02_frequency_discrimination_task.py `#Experiment 2` $ python 03_sequential_mnist.py `#Experiment 3` ## Acknowledgements Special thanks to the authors in https://github.com/imatge-upc/skiprnn-2017-telecombcn for their SkipRNN implementation. I have used some parts of their implementation. ## Cite ``` @article{DBLP:journals/corr/abs-1708-06834, author = {Victor Campos and Brendan Jou and Xavier {Gir{\'{o}} i Nieto} and Jordi Torres and Shih{-}Fu Chang}, title = {Skip {RNN:} Learning to Skip State Updates in Recurrent Neural Networks}, journal = {CoRR}, volume = {abs/1708.06834}, year = {2017}, url = {http://arxiv.org/abs/1708.06834}, archivePrefix = {arXiv}, eprint = {1708.06834}, timestamp = {Tue, 05 Sep 2017 10:03:46 +0200}, biburl = {http://dblp.org/rec/bib/journals/corr/abs-1708-06834}, bibsource = {dblp computer science bibliography, http://dblp.org} } ``` ## Authors * Albert Berenguel (@aberenguel) [Webpage](https://scholar.google.es/citations?user=HJx2fRsAAAAJ&hl=en)