# python-pesq **Repository Path**: hpd84_0321/python-pesq ## Basic Information - **Project Name**: python-pesq - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-07-20 - **Last Updated**: 2024-07-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # pesq [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6549559.svg)](https://doi.org/10.5281/zenodo.6549559) [![Downloads](https://pepy.tech/badge/pesq)](https://pepy.tech/project/pesq) [![Downloads](https://pepy.tech/badge/pesq/month)](https://pepy.tech/project/pesq) PESQ (Perceptual Evaluation of Speech Quality) Wrapper for Python Users This code is designed for numpy array specially. # Requirements C compiler numpy cython # Install with pip ```bash # PyPi Repository $ pip install pesq # The Latest Version $ pip install https://github.com/ludlows/python-pesq/archive/master.zip ``` # Usage for narrowband and wideband Modes Please note that the sampling rate (frequency) should be 16000 or 8000 (Hz). And using 8000Hz is supported for narrowband only. The code supports error-handling behaviors now. ```python def pesq(fs, ref, deg, mode='wb', on_error=PesqError.RAISE_EXCEPTION): """ Args: ref: numpy 1D array, reference audio signal deg: numpy 1D array, degraded audio signal fs: integer, sampling rate mode: 'wb' (wide-band) or 'nb' (narrow-band) on_error: error-handling behavior, it could be PesqError.RETURN_VALUES or PesqError.RAISE_EXCEPTION by default Returns: pesq_score: float, P.862.2 Prediction (MOS-LQO) """ ``` Once you select `PesqError.RETURN_VALUES`, the `pesq` function will return -1 when an error occurs. Once you select `PesqError.RAISE_EXCEPTION`, the `pesq` function will raise an exception when an error occurs. It supports the following errors now: `InvalidSampleRateError`, `OutOfMemoryError`,`BufferTooShortError`,`NoUtterancesError`,`PesqError`(other unknown errors). ```python from scipy.io import wavfile from pesq import pesq rate, ref = wavfile.read("./audio/speech.wav") rate, deg = wavfile.read("./audio/speech_bab_0dB.wav") print(pesq(rate, ref, deg, 'wb')) print(pesq(rate, ref, deg, 'nb')) ``` # Usage for `multiprocessing` feature ```python def pesq_batch(fs, ref, deg, mode='wb', n_processor=None, on_error=PesqError.RAISE_EXCEPTION): """ Running `pesq` using multiple processors Args: on_error: ref: numpy 1D (n_sample,) or 2D array (n_file, n_sample), reference audio signal deg: numpy 1D (n_sample,) or 2D array (n_file, n_sample), degraded audio signal fs: integer, sampling rate mode: 'wb' (wide-band) or 'nb' (narrow-band) n_processor: cpu_count() (default) or number of processors (chosen by the user) or 0 (without multiprocessing) on_error: PesqError.RAISE_EXCEPTION (default) or PesqError.RETURN_VALUES Returns: pesq_score: list of pesq scores, P.862.2 Prediction (MOS-LQO) """ ``` this function uses `multiprocessing` features to boost time efficiency. When the `ref` is an 1-D numpy array and `deg` is a 2-D numpy array, the result of `pesq_batch` is identical to the value of `[pesq(fs, ref, deg[i,:],**kwargs) for i in range(deg.shape[0])]`. When the `ref` is a 2-D numpy array and `deg` is a 2-D numpy array, the result of `pesq_batch` is identical to the value of `[pesq(fs, ref[i,:], deg[i,:],**kwargs) for i in range(deg.shape[0])]`. # Correctness The correctness is verified by running samples in audio folder. PESQ computed by this code in wideband mode is 1.0832337141036987 PESQ computed by this code in narrowband mode is 1.6072081327438354 # Note Sampling rate (fs|rate) - No default. Must select either 8000Hz or 16000Hz. Note there is narrowband (nb) mode only when sampling rate is 8000Hz. The original C source code is modified. # Who is using `pesq` Please click [here](https://github.com/ludlows/python-pesq/network/dependents) to see these repositories, whose owners include `Facebook Research`, `SpeechBrain`, `NVIDIA` .etc. # Cite this code ``` @software{miao_wang_2022_6549559, author = {Miao Wang, Christoph Boeddeker, Rafael G. Dantas and ananda seelan}, title = {PESQ (Perceptual Evaluation of Speech Quality) Wrapper for Python Users}, month = may, year = 2022, publisher = {Zenodo}, version = {v0.0.4}, doi = {10.5281/zenodo.6549559}, url = {https://doi.org/10.5281/zenodo.6549559}} ``` # Acknowledgement This work was funded by the Natural Sciences and Engineering Research Council of Canada. This work was also funded by the Concordia University, Montreal, Canada.