# Recommender-System **Repository Path**: hucj2012/Recommender-System ## Basic Information - **Project Name**: Recommender-System - **Description**: A developing recommender system in tensorflow2. Algorithm: UserCF, ItemCF, LFM, SLIM, GMF, MLP, NeuMF, FM, DeepFM, MKR, RippleNet, KGCN and so on. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 0 - **Created**: 2020-01-11 - **Last Updated**: 2024-02-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Recommender-System A developing recommender system, implements in tensorflow 2. Dataset: MovieLens-100k, MovieLens-1m, MovieLens-20m, lastfm, Book-Crossing, and some satori knowledge graph. Algorithm: UserCF, ItemCF, LFM, SLIM, GMF, MLP, NeuMF, FM, DeepFM, MKR, RippleNet, KGCN and so on. Evaluation: ctr's auc f1 and topk's precision recall. ## Requirements * Python 3.7 * Tensorflow 2.1.0 ## Run [Download data files](https://github.com/SSSxCCC/Recommender-System/tree/datafile) and put 'ds' and 'kg' under 'Recommender_System/data' folder. Open parent directory of current file as project in PyCharm, set up Python 3.7 interpreter and pip install tensorflow==2.1.0. Go to Recommender_System/algorithm/xxx/main.py and run. --- # Recommender-System推荐系统 这是一个正在开发的基于tensorflow2实现的推荐系统。 数据集:电影MovieLens-100k, MovieLens-1m, MovieLens-20m,音乐lastfm,书Book-Crossing,以及一些satori知识图谱。 算法:UserCF(基于用户的协同过滤), ItemCF(基于物品的协同过滤), LFM, SLIM, GMF, MLP, NeuMF, FM, DeepFM, MKR, RippleNet, KGCN等。 评估指标:点击率预测ctr的auc和f1,topk评估的准确率precision和召回率recall. ## 需求 * Python 3.7 * Tensorflow 2.1.0 ## 运行 [下载数据文件](https://github.com/SSSxCCC/Recommender-System/tree/datafile)并将文件夹'ds'和'kg'放到'Recommender_System/data'目录下。 在PyCharm里面将此文件的父文件夹作为项目打开,设置好Python3.7的环境并使用pip安装tensorflow的2.1.0版本。 到Recommender_System/algorithm/xxx/main.py源码文件下并点击运行。