# SNIDSA **Repository Path**: hummingb1rd/snidsa ## Basic Information - **Project Name**: SNIDSA - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-19 - **Last Updated**: 2021-03-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Sequential-Neural-Information-Diffusion-Model-with-Structure-Attention This repository provides reference codes as described in the paper: >**A Sequential Neural Information Diffusion Model with Structure Attention.** >**Zhitao Wang, Chengyao Chen and Wenjie Li.** >**CIKM, 2018.** ## Environment The code is implemented with Tensorflow. Requirments:  1. Python 2.7  2. Numpy  3. Tensorflow  4. tqdm (for training process display) ## Run Defalut: python train.py Or run with optional arguments: python train.py -d data/hc-exp -l 0.001 -x 32 -e 64 -b 32 -n 200 -f 5 Check the arguments as: python train.py -h -l, --lr (learning rate) -x, --xdim (embedding dimension) -e, --hdim (hidden dimension) -d, --data (data path) -g, --gpu (gpu id) -b, --bs (batch size) -f, --freq (validation frequency) -n, --nepoch (number of training epochs) ## Data Format ### Cascades: >u1_id,u2_id,...,ul_id:u1_time,u2_time,...,ul_time (time is optional, we do not use) >Example: 334,478,398,222:75.117015,77.968750,78.757250,80.020426 Or >u1_id,u2_id,...,ul_id >Example: 334,478,398,222 ### Graph: >u1_id u2_id weight (weight is optional, we do not use) >Example: 0 132 0.010008 Or >u1_id u2_id >Example: 0 132 ## Data Creation You can create graph and generate cascades through the software NETINF (http://snap.stanford.edu/netinf/) ## Citing @inproceedings{Wang:2018:SNI:3269206.3269275, author = {Wang, Zhitao and Chen, Chengyao and LI, Wenjie}, title = {A Sequential Neural Information Diffusion Model with Structure Attention}, booktitle = {Proceedings of the 27th ACM International Conference on Information and Knowledge Management}, series = {CIKM '18}, year = {2018}, location = {Torino, Italy}, pages = {1795--1798} }