# Net-Project **Repository Path**: hxh_create/net-project ## Basic Information - **Project Name**: Net-Project - **Description**: DGraph for work - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-12-14 - **Last Updated**: 2022-12-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README This repo provides a collection of baselines for DGraphFin dataset. Please download the dataset from the [DGraph](http://dgraph.xinye.com) web and place it under the folder './dataset/DGraphFin/raw'. ## Project Description - `model_results`: store the .csv file which include the final result for each model - `models`: model file included by gnn.py - `utils`: include the preprocess file / dataset loader / logger / Evaluator - `output`: the log file to run each model ## Environments Python environment: - pytorch = 1.13.0 - cudatookit = 11.6.1 - torch_geometric = 1.7.2 (when you are running GEARSAGE please use 2.0.4) - torch_scatter = 2.1.0+pt113cu116 - torch_sparse = 0.6.15+pt113cu116 - cogdl = 0.5.3 - pyg-lib = 0.1.0+pt113cu116 GPU environment: - GPU: RTX A5000 24G * 1 ## Training - **GearSage** ```bash python gear_gnn.py --model gear --dataset DGraphFin --epochs 200 --runs 10 --device 0 ``` - **SIGN** ```bash python gnn.py --model sign --dataset DGraphFin --epochs 200 --runs 10 --device 0 ``` - **MLP** ```bash python gnn.py --model mlp --dataset DGraphFin --epochs 200 --runs 10 --device 0 ``` - **GCN** ```bash python gnn.py --model gcn --dataset DGraphFin --epochs 200 --runs 10 --device 0 ``` - **GraphSAGE** ```bash python gnn.py --model sage --dataset DGraphFin --epochs 200 --runs 10 --device 0 ``` - **GraphSAGE (NeighborSampler)** ```bash python gnn_mini_batch.py --model sage_neighsampler --dataset DGraphFin --epochs 200 --runs 10 --device 0 ``` - **GAT (NeighborSampler)** ```bash python gnn_mini_batch.py --model gat_neighsampler --dataset DGraphFin --epochs 200 --runs 10 --device 0 ``` - **GATv2 (NeighborSampler)** ```bash python gnn_mini_batch.py --model gatv2_neighsampler --dataset DGraphFin --epochs 200 --runs 10 --device 0 ``` ## MyResults: Performance on **DGraphFin**(10 runs) (%): (ranked by test AUC ) | rk | Methods | Train AUC | Valid AUC | Test AUC | | :---- | ---- | ---- | ---- | ---- | | 1 | GEARSAGE | 84.7251 ± 0.0776 | 83.3331 ± 0.0747 | **84.1887 ± 0.0565** | | 2 | GraphSAGE (NeighborSampler) | 78.6245 ± 0.1391 | 76.8072 ± 0.08 | 77.6441 ± 0.1343 | | 3 | SIGN | 77.2373 ± 0.2803 | 75.5652 ± 0.1840 | 76.9460 ± 0.3002 | | 4 | GraphSAGE| 76.7854 ± 0.1881 | 75.4739 ± 0.1894 | 76.2051 ± 0.2010 | | 5 | GATv2 (NeighborSampler) | 76.3698 ± 0.7377 | 74.7529 ± 0.788 | 75.7034 ± 0.6571 | | 6 | GAT (NeighborSampler) | 74.2509 ± 0.3803 | 72.5287 ± 0.2654 | 73.6141 ± 0.3018 | | 7 | MLP | 72.1234 ± 0.0912 | 71.2699 ± 0.0924 | 71.8815 ± 0.0858 | | 8 | GCN | 71.0831 ± 0.3224 | 70.7958 ± 0.3028 | 70.7996 ± 0.2721 | ## Results from [Origin Repo](https://github.com/DGraphXinye/DGraphFin_baseline): Performance on **DGraphFin**(10 runs): | Methods | Train AUC | Valid AUC | Test AUC | | :---- | ---- | ---- | ---- | | MLP | 0.7221 ± 0.0014 | 0.7135 ± 0.0010 | 0.7192 ± 0.0009 | | GCN | 0.7108 ± 0.0027 | 0.7078 ± 0.0027 | 0.7078 ± 0.0023 | | GraphSAGE| 0.7682 ± 0.0014 | 0.7548 ± 0.0013 | 0.7621 ± 0.0017 | | GraphSAGE (NeighborSampler) | 0.7845 ± 0.0013 | 0.7674 ± 0.0005 | **0.7761 ± 0.0018** | | GAT (NeighborSampler) | 0.7396 ± 0.0018 | 0.7233 ± 0.0012 | 0.7333 ± 0.0024 | | GATv2 (NeighborSampler) | 0.7698 ± 0.0083 | 0.7526 ± 0.0089 | 0.7624 ± 0.0081 |