# cursor的rules-mdc集合 **Repository Path**: hyshdgq/cursor-rules-mdc ## Basic Information - **Project Name**: cursor的rules-mdc集合 - **Description**: 一些cursor的Project rules - **Primary Language**: Unknown - **License**: CC0-1.0 - **Default Branch**: cursor-rules-cli - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 1 - **Created**: 2025-05-08 - **Last Updated**: 2025-08-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MDC Rules Generator This project generates Cursor MDC (Markdown Cursor) rule files from a structured JSON file containing library information. It uses Exa for semantic search and LLM (Gemini) for content generation. ## Features - Generates comprehensive MDC rule files for libraries - Uses Exa for semantic web search to gather best practices - Leverages LLM to create detailed, structured content - Supports parallel processing for efficiency - Tracks progress to allow resuming interrupted runs - Smart retry system that focuses on failed libraries by default ## Prerequisites - Python 3.8+ - [uv](https://github.com/astral-sh/uv) for dependency management - API keys for: - Exa (for semantic search) - LLM provider (Gemini, OpenAI, or Anthropic) ## Installation 1. Clone this repository: ```bash git clone https://github.com/sanjeed5/awesome-cursor-rules-mdc.git cd awesome-cursor-rules-mdc ``` 2. Install dependencies using uv: ```bash uv sync ``` 3. Set up environment variables: Create a `.env` file in the project root with your API keys: ``` EXA_API_KEY=your_exa_api_key GOOGLE_API_KEY=your_google_api_key # For Gemini # Or use one of these depending on your LLM choice: # OPENAI_API_KEY=your_openai_api_key # ANTHROPIC_API_KEY=your_anthropic_api_key ``` ## Configuration The script uses a `config.yaml` file for configuration. You can modify this file to adjust: - API rate limits - Output directories - LLM model selection - Processing parameters ## Usage Run the script with: ```bash uv run src/generate_mdc_files.py ``` By default, the script will only process libraries that failed in previous runs. This behavior helps ensure reliability and efficiency. ### Command-line Options - `--test`: Run in test mode (process only one library) - `--tag TAG`: Process only libraries with a specific tag - `--library LIBRARY`: Process only a specific library - `--output OUTPUT_DIR`: Specify output directory for MDC files - `--verbose`: Enable verbose logging - `--workers N`: Set number of parallel workers - `--rate-limit N`: Set API rate limit calls per minute - `--regenerate-all`: Process all libraries, including previously completed ones ### Examples Process failed libraries (default behavior): ```bash uv run src/generate_mdc_files.py ``` Regenerate all libraries: ```bash uv run src/generate_mdc_files.py --regenerate-all ``` Process only Python libraries: ```bash uv run src/generate_mdc_files.py --tag python ``` Process a specific library: ```bash uv run src/generate_mdc_files.py --library react ``` ## Project Structure - `src/`: Source code directory - `generate_mdc_files.py`: Main script - `config.yaml`: Configuration file - `mdc-instructions.txt`: Instructions for MDC generation - `logs/`: Log files directory - `exa_results/`: Directory for Exa search results - `rules.json`: Input file with library information - `rules-mdc/`: Output directory for generated MDC files - `pyproject.toml`: Project dependencies and metadata ## License [MIT License](LICENSE)