# CenterMulti **Repository Path**: hzf11/CenterMulti ## Basic Information - **Project Name**: CenterMulti - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-02 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CenterMulti代码实现参考以下 Object detection, 3D detection, and pose estimation using center point detection: ![](readme/fig2.png) > [**Objects as Points**](http://arxiv.org/abs/1904.07850), > Xingyi Zhou, Dequan Wang, Philipp Krähenbühl, > [**CenterNet code**](https://github.com/xingyizhou/centernet) > 更强大的centernet优化版本(https://github.com/jinfagang/CenterNet_Pro_Max) ## 1. Backebone - **Strong**: 增加支持mobilenetV2,mobilenetV3,efficientdet,shufflenetv2,部分网络需要支持DCNv2. ![performance](Backebone/performance.png) - **Data process**: 添加widerface转coco格式,参见root/data_process. ## 2. Purpose ### 2.1 Object Detection - **类别**: 可支持行人、人脸、车辆、缺陷等检测,只需要修改数据加载即可 | Backbone | AP / FPS | Flip AP / FPS| Multi-scale AP / FPS | |--------------|-----------|--------------|-----------------------| |Hourglass-104 | 40.3 / 14 | 42.2 / 7.8 | 45.1 / 1.4 | |DLA-34 | 37.4 / 52 | 39.2 / 28 | 41.7 / 4 | |ResNet-101 | 34.6 / 45 | 36.2 / 25 | 39.3 / 4 | |ResNet-18 | 28.1 / 142| 30.0 / 71 | 33.2 / 12 | All models and details are available in > [**CenterNet MODEL_ZOO**](https://github.com/xingyizhou/CenterNet/blob/master/readme/MODEL_ZOO.md) ![shoulder](images/shoulder.png) ![defect](images/defect.png) ### 2.2 keypoint or pose - **姿态估计or关键点检测**: 修改keypoint的数量及coco加载keypoint的格式可针对性训练多种形式的pose(如landmark等) > [**姿态估计参考centerpose**](https://github.com/tensorboy/centerpose) | Backbone | AP | FPS | TensorRT Speed | Download | |--------------|-----------|--------------|----------|----------| |DLA-34 | 62.7 | 23 | - |[model](https://drive.google.com/open?id=1IahJ3vpjTVu1p-Okf6lcn-bM7fVKNg6N) | |Resnet-50 | 54.5 | 28 | 33 |[model](https://drive.google.com/open?id=1oBgWrfigo2fGtpQJXQ0stADTgVFxPWGq) | |MobilenetV3 | 46.0 | 30 | 50 |[model](https://drive.google.com/open?id=1snJnADAD1NUzyO1QXCftuZu1rsr8095G) | |ShuffleNetV2 | 43.9 | 25 | - |[model](https://drive.google.com/open?id=1FK7YQzCB6mLcb0v4SOmlqtRJfA-PQSvN) | |[High Resolution](https://github.com/HRNet/Higher-HRNet-Human-Pose-Estimation)| 57.1 | 16 | - |[model](https://drive.google.com/open?id=1X0yxGeeNsD4VwU2caDo-BaH_MoCAnU_J) | |[HardNet]()| 45.6 | 30 | - |[model](https://drive.google.com/open?id=1Y75bGuJyf1_Tr0ksoJ5Z7xaCp4v5DG2g) | |[Darknet53]()| 34.2 | 30 | - |[model](https://drive.google.com/open?id=1S8spP_QKHqIYmWpfF9Bb4-4OoUXIOnkh) | ![face_landmark](images/face_landmark.png) ### 2.3 model > [**centerface/shoulder/defect模型**](https://pan.baidu.com/s/1DzlvIZ3ujEzNLsU50UWLNw) 提取码: u3pq - **defect**: defect模型基于mobilenetv2训练,由于部分数据标定不准,所以结果会有偏差,建议只供pre-train. - **centerface**: 该版本的centerface是基于修改的centernet训练,训练数据参照widerface,其中对质量不好的face做了过滤,使其更适合人脸识别的工程应用,模型有两个,分别是3.5M和8.9M. ``` centerface的训练:例如修改lib/datasets/coco_hp.py里num_joints = 5;flip_idx = [[0, 1], [3, 4]]以及整个项目里17的关节点数全部置换成5,dets[39:51]这类全部换成dets[15:20]等 ``` ## 3. TensorRT 1. torch转onnx ``` python convert2onnx.py ``` 2. onnx转TensorRT ``` python demo_tensorrt.py ``` 3. 检测框架支持的TensorRT > [**TensorRT C++**](https://github.com/CaoWGG/TensorRT-CenterNet) ``` #shoulder检测模型支持该框架加速(不需要DCNs),total runtime = 3.82147 ms #在include/ctdetConfig.h里添加以下,然后cmake即可 constexpr static int input_w = 512 ; constexpr static int input_h = 512 ; constexpr static int channel = 3 ; constexpr static int classNum = 1 ; constexpr static float mean[]= {0.408, 0.447, 0.470}; constexpr static float std[] = {0.289, 0.274, 0.278}; constexpr static char *className[]= {(char*)"shoulder"}; ``` ## Citation If you find this project useful for your research, please use the following BibTeX entry. @contact{yangsai1991@163.com, title={Objects as Points}, author={bleakie}, year={2019} }