# machine-learning-book **Repository Path**: ifun2021/machine-learning-book ## Basic Information - **Project Name**: machine-learning-book - **Description**: Code Repository for Machine Learning with PyTorch and Scikit-Learn - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-07-22 - **Last Updated**: 2024-09-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # *Machine Learning with PyTorch and Scikit-Learn* Book ## Code Repository Paperback: 770 pages Publisher: Packt Publishing Language: English ISBN-10: 1801819319 ISBN-13: 978-1801819312 Kindle ASIN: B09NW48MR1 [](https://www.amazon.com/Machine-Learning-PyTorch-Scikit-Learn-scikit-learn-ebook-dp-B09NW48MR1/dp/B09NW48MR1/) ## Links - [Amazon link](https://www.amazon.com/Machine-Learning-PyTorch-Scikit-Learn-scikit-learn-ebook-dp-B09NW48MR1/dp/B09NW48MR1/) - [Packt link](https://www.packtpub.com/product/machine-learning-with-pytorch-and-scikit-learn/9781801819312) - [Blog post summarizing the contents](https://sebastianraschka.com/blog/2022/ml-pytorch-book.html) ## Table of Contents and Code Notebooks **Helpful installation and setup instructions can be found in the [README.md file of Chapter 1](ch01/README.md)**. **In addition, Zbynek Bazanowski contributed [this helpful guide](supplementary/running-on-colab.pdf) explaining how to run the code examples on Google Colab.** **Please note that these are just the code examples accompanying the book, which we uploaded for your convenience; be aware that these notebooks may not be useful without the formulae and descriptive text.** 1. Machine Learning - Giving Computers the Ability to Learn from Data [[open dir](ch01)] 2. Training Machine Learning Algorithms for Classification [[open dir](ch02)] 3. A Tour of Machine Learning Classifiers Using Scikit-Learn [[open dir](ch03)] 4. Building Good Training Sets – Data Pre-Processing [[open dir](ch04)] 5. Compressing Data via Dimensionality Reduction [[open dir](ch05)] 6. Learning Best Practices for Model Evaluation and Hyperparameter Optimization [[open dir](ch06)] 7. Combining Different Models for Ensemble Learning [[open dir](ch07)] 8. Applying Machine Learning to Sentiment Analysis [[open dir](ch08)] 9. Predicting Continuous Target Variables with Regression Analysis [[open dir](ch09)] 10. Working with Unlabeled Data – Clustering Analysis [[open dir](ch10)] 11. Implementing a Multi-layer Artificial Neural Network from Scratch [[open dir](ch11)] 12. Parallelizing Neural Network Training with PyTorch [[open dir](ch12)] 13. Going Deeper -- The Mechanics of PyTorch [[open dir](ch13)] 14. Classifying Images with Deep Convolutional Neural Networks [[open dir](ch14)] 15. Modeling Sequential Data Using Recurrent Neural Networks [[open dir](ch15)] 16. Transformers -- Improving Natural Language Processing with Attention Mechanisms [[open dir](ch16)] 17. Generative Adversarial Networks for Synthesizing New Data [[open dir](ch17)] 18. Graph Neural Networks for Capturing Dependencies in Graph Structured Data [[open dir](ch18)] 19. Reinforcement Learning for Decision Making in Complex Environments [[open dir](ch19)] ---

Sebastian Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili. *Machine Learning with PyTorch and Scikit-Learn*. Packt Publishing, 2022. @book{mlbook2022, address = {Birmingham, UK}, author = {Sebastian Raschka, and Yuxi (Hayden) Liu, and Vahid Mirjalili}, isbn = {978-1801819312}, publisher = {Packt Publishing}, title = {{Machine Learning with PyTorch and Scikit-Learn}}, year = {2022} } ​ ## Coding Environment Please see the [ch01/README.md](ch01/README.md) file for setup recommendations. ## Translations into other Languages - Serbian Translation: [Mašinsko učenje uz PyTorch i Scikit-Learn](https://knjige.kombib.rs/masinsko-ucenje-uz-pytorch-i-scikit-learn). ISBN: 9788673105772