# wordcloud2.js **Repository Path**: imjasonliao/wordcloud2.js ## Basic Information - **Project Name**: wordcloud2.js - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: gh-pages - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-04-20 - **Last Updated**: 2022-09-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # wordcloud2.js [![npm version](https://badge.fury.io/js/wordcloud.svg)](http://badge.fury.io/js/wordcloud) Create a tag cloud/[Wordle](http://www.wordle.net/) presentation on 2D canvas or HTML. This library is a spin-off project from [HTML5 Word Cloud](https://github.com/timdream/wordcloud). **Visit the [demo page](https://timdream.org/wordcloud2.js/)** ## Installation npm install wordcloud ## Simple usage Download the latest `wordcloud2.js` file from the `src` folder in this repository. Load `wordcloud2.js` script to the web page, and run: WordCloud(document.getElementById('my_canvas'), { list: list } ); where `list` is an array that look like this: `[['foo', 12], ['bar', 6]]`. Options available, see [API documentation](./API.md) for detail. ## Contact & help Please read through the API documentation and [CONTRIBUTING.md](./CONTRIBUTING.md) before filing an issue or contact me via e-mail. ## Algorithm Before putting each word on the canvas, it is drawn on a separate canvas to read back the pixels to record is drawn spaces. With the information, wordcloud.js will then try to find a place to fit the word that is closest to the start point. ## Testing Tests are available with [QUnit](https://qunitjs.com/) and `grunt`. To setup environment for testing, run `npm install` and manually install [SlimerJS](https://slimerjs.org/) of your platform. Use `grunt test` to ensure all options can be set without JavaScript error. Use `grunt compare --base-commit=gh-pages` to compare your proposed fix with `gh-pages` branch. ## Acknowledgement The developer would like to thank [Chad Jensen](mailto:scubaaddiction@gmail.com) for sponsoring the work on image masking on the demo page.