
Abstract Interpretation

Web page maintained by P. Cousot

Last update: Aug 5, 2008

From: Abstract Interpretation

[bookmark: tth_sEc1]
1Introduction to Abstract Interpretation

The formal verification of a program (and more generally a
computer system) consists in proving that its semantics
(describing "what the program executions actually do") satisfies its
specification (describing "what the program executions are
supposed to do").

Abstract interpretation
[[bookmark: CITECousotCousot77-1-POPL]22,[bookmark: CITECousotCousot79-1-POPL]26] formalizes the idea
that this formal proof can be done at some level of abstraction where
irrelevant details about the semantics and the specification are
ignored. This amounts to proving that an abstract semantics
satisfies an abstract specification. An example of abstract
semantics is Hoare logic while examples of abstract specifications are
invariance, partial, or total correctness. This abstracts away from
concrete properties such as execution times.

Abstractions should preferably be sound (no conclusion derived
from the abstract semantics is wrong relative to the program concrete
semantics and specification). Otherwise stated, a proof that the
abstract semantics satisfies the abstract specification should imply
that the concrete semantics also satisfies the concrete specification.
Hoare logic is a sound verification method, debugging is not (since
some executions are left out), bounded model checking is not either
(since parts of some executions are left out). Unsound abstractions
lead to false negatives (the program may be claimed to be
correct/non erroneous with respect to the specification whereas it is
indeed incorrect).

Abstractions should also preferably be complete (no aspect of
the semantics relevant to the specification is left out). So if the
concrete semantics satisfies the concrete specification this should be
provable in the abstract. However program proofs are undecidable, and
so automatic tools for reasoning about programs are all incomplete
(for non trivial program properties such as safety, liveness, or
security) and must therefore fail on some programs. This can be
achieved by allowing the tool not to terminate, to be unsound (e.g.debugging tools omit possible executions), or to be incomplete (e.g.static analysis tools may produce false alarms). Incomplete
abstractions lead to false positives or false alarms
(the specification is claimed to be potentially violated by some
program executions while it is not).

Potentially non-terminating and unsound program verification tools are
easy to design. Terminating and sound tools are much more difficult
to design. Complete tools are impossible to design, by
undecidability. However static analysis tools producing very few or
no false alarms have been designed and used in industrial contexts for
specific families of properties and programs [[bookmark: CITECousotEtAl05-ESOP]42].
In all cases, abstract interpretation provides a systematic
construction method based on the effective approximation of the
concrete semantics, which can be (partly) automated and/or formally
verified.

Abstract interpretation aims at

	 providing a basic coherent and conceptual theory for
understanding in a unified framework the thousands of ideas, concepts,
reasonings, methods, and tools on formal program analysis and
verification [[bookmark: CITECousotCousot77-1-POPL]22,[bookmark: CITECousotCousot79-1-POPL]26];

	 guiding the correct formal design of automatic tools for program
analysis (computing an abstract semantics) and program
verification (proving that an abstract semantics satisfies an
abstract specification) [[bookmark: CITECousot99-3-Marktoberdorf-paper]17].

Abstract interpretation theory studies semantics (formal models of
computer systems), abstractions, their soundness, and completeness.

The informal presentation
"Abstract
Interpretation in a Nutshell" aims at providing a short intuitive
introduction to the theory. The
"basic
concepts
of
abstract
interpretation" and an elementary
"course
on abstract interpretation" can also be found on the web.

 [bookmark: tth_sEc2]
2What can be formalized by abstract interpretation?

Abstract interpretation is useful in computer science to formalize
reasonings involving the [sound [and complete]] approximation of the
semantics of formal systems. A non-exhaustive list of typical
examples of application is given below.

 [bookmark: tth_sEc2.1]
2.1Syntax

The analysis of properties of grammars as well as parsing are abstract
interpretations of the grammar operational semantics and its
abstractions (such as parse trees, protolanguages, or terminal
languages) [[bookmark: CITECousotCousot03-TCS-parsing]39].

 [bookmark: tth_sEc2.2]
2.2Semantics

The semantics of programs describes their possible runtime executions
in all possible execution environments at some level of abstraction.
The hierarchy of semantics, including trace, small-step, and big-step
operational semantics, relational semantics, denotational semantics,
predicate transformers, and axiomatic semantics in their angelic,
natural, and demoniac versions can be designed by abstract
interpretation [[bookmark: CITECousotCousot92-1-POPL]32,[bookmark: CITECousot02-TCS]19]. An
extension to transfinite behaviors is useful to formalize e.g.semantic slicing [[bookmark: CITEGiacobazziMastroeni03-transfinite]54].

 [bookmark: tth_sEc2.3]
2.3Proofs

Formal proofs of program correctness involve an abstraction since
specifications always ignore some aspects of program execution which
need not be taken into account in the proof [[bookmark: CITECousot00-SARA]18].

 [bookmark: tth_sEc2.4]
2.4Static analysis

Static analysis is the automatic determination of abstract program
properties
[[bookmark: CITECousotCousot77-1-POPL]22,[bookmark: CITECousotHalbwachs78-1-POPL]44,[bookmark: CITECousotCousot79-1-POPL]26,[bookmark: CITECousot81-1-MuchnickJones]15]
including Dataflow Analysis
[[bookmark: CITEHecht77-1]67], [[bookmark: CITECousotCousot79-1-POPL]26,[bookmark: CITECousotCousot00-POPL]36],
Set-based Analysis [[bookmark: CITECousotCousot95-3-FPCA]35], etc. This was
the motivating application behind the introduction of the abstract
interpretation theory.

 [bookmark: tth_sEc2.5]
2.5Types

Static typing and type inference [[bookmark: CITEPierce02-TypesBook]97] can be
understood as an abstract interpretation of runtime type checking thus
providing a "correct by construction" design method
[[bookmark: CITECousot97-1-POPL]16,[bookmark: CITECominiDamianiVrech08-SAS]11].

 [bookmark: tth_sEc2.6]
2.6Model-checking

Model-checking exhaustively verifies temporal properties on a
finite model of hardware or software computer systems
[[bookmark: CITEClarkeGrumbergPeled99-1]10]. This abstraction of a system into a
model is often left implicit. Abstract model checking, as
formalized by abstract interpretation, makes this abstraction explicit
[[bookmark: CITEClarkeEtAl-TOPLAS94]9], [[bookmark: CITECousotCousot00-POPL]36], .

Model-checking is reputed to be terminating, sound, and complete on the
model. From an abstract interpretation point of view, relating the
system to its model, it may be sound on the model but unsound on the
system (e.g.the model is correct for safety properties but wrong for
liveness properties), it is often incomplete (no finite model can
cover the specified behaviors of the system [[bookmark: CITERanzato01-esop01]100])
and, in practice, may explode combinatorially. In all cases abstract
interpretations of the system into a model have to be considered. All
transition models are abstract semantics but the converse is not true.

 [bookmark: tth_sEc2.7]
2.7Predicate abstraction

Predicate abstraction [[bookmark: CITEGrafSaidi96-CAV]61] can be used to reduce any
static analysis on a finite abstract domain to boolean fixpoint
computations as performed by a model-checker using a theorem prover to
automatically derive the abstract transformers involved in the
fixpoint definition. Parametric predicate abstraction is an extension
to infinite abstract domains [[bookmark: CITECousot03-ZM]20].

 [bookmark: tth_sEc2.8]
2.8Counter-example-based refinement

Spurious counter-example-based refinement in abstract model-checking
is formalized as an abstract domain completion problem in the abstract
interpretation theory [[bookmark: CITEGiacobazziQuintarelli-SAS01]56,[bookmark: CITECousotGantyRaskin07-SAS]43].

 [bookmark: tth_sEc2.9]
2.9Strong Preservation

The problem of modifying finite abstract model checking by minimal
refinements in order to get strong preservation for some specification
language, including partition refinement algorithms, is a completion
problem in the abstract interpretation theory
[[bookmark: CITERanzatoTapparo-06-VMCAI]101].

 [bookmark: tth_sEc2.10]
2.10Program transformation

Program transformations (such as partial evaluation
[[bookmark: CITEJonesGomardSestoft93-1]72]) often require a static analysis of the
source program, as formalized by abstract interpretation (e.g.[[bookmark: CITEJones-SAS97]71]). Moreover, the transformation itself, from source
to object programs, involves a loss of information on the original
program or a limitation on the possible program behaviors. This
approximation can be formalized by abstract interpretation. This was
exemplified on dead-code elimination, slicing, partial evaluation, or
program monitoring [[bookmark: CITECousotCousot02-POPL]38].

 [bookmark: tth_sEc2.11]
2.11Watermarking

Looking for program watermarks that are not subject to obfuscation, one
can think to an abstract interpretation of the program semantics
[[bookmark: CITECousotCousot04-POPL]40].

 [bookmark: tth_sEc2.12]
2.12Information hiding

In language-based software security, the information to be hidden to an
intruder can be formalized as an abstract interpretation of the
program semantics [[bookmark: CITEGiacobazziMastroeni-FORMATS05]55].

 [bookmark: tth_sEc2.13]
2.13Code obfuscation

The aim of code obfuscation is to prevent malicious users from
discovering properties of the original source program. This goal can
be precisely modeled by abstract interpretation, where the hiding of
properties corresponds to abstracting the semantics
[[bookmark: CITEDallaPredaGiacobazzi-SEFM05]99].

 [bookmark: tth_sEc2.14]
2.14Malware detection

An obfuscated malware is better detected by the effects of its
execution as recognized by an abstract interpretation rather than by a
syntactic signature [[bookmark: CITEDallaPredaEtAl-POPL07]98].

 [bookmark: tth_sEc2.15]
2.15Termination

A relational abstract-interpretation-based static analysis on a
well-founded abstract domain can be systematically extended to a
termination analysis [[bookmark: CITEBerdineEtAl-POPL07]3] (whence liveness analyses).
Termination analysis may require probabilistic hypotheses [[bookmark: CITEMonniaux_SAS01]87] or fairness hypotheses
on parallel processes [[bookmark: CITEMauborgne-SAS-00]78].

 [bookmark: tth_sEc3]
3Topics in abstract interpretation

 [bookmark: tth_sEc3.1]
3.1Abstract domains

[bookmark: sec:abs-dom]

An abstract domain is an abstract algebra, often implemented as a
library module (see Sec.5), providing a
description of abstract program properties and abstract property
transformers describing the operational effect of program instructions
and commands in the abstract. Abstract domains are often complete
lattices, an abstraction of powersets [[bookmark: CITECousotCousot79-1-POPL]26].

 [bookmark: tth_sEc3.2]
3.2Finite versus infinite abstract domains

The first infinite abstract domain (that of intervals) was introduced
in [[bookmark: CITECousotCousot76-1-ISOP]21]. This abstract domain was later used
to prove that, thanks to widenings, infinite abstract domains can lead
to effective static analyses for a given programming language that are
strictly more precise and equally efficient than any other one using a
finite abstract domain or an abstract domain satisfying chain
conditions [[bookmark: CITECousotCousot92-4-PLILP]31].

 [bookmark: tth_sEc3.3]
3.3Merge over all paths (MOP) in dataflow analysis

 The
first dataflow analyses where proved correct by comparing the union of
the abstraction along all execution paths (so-called MOP[bookmark: tthFrefAAB]1 solution) with a fixpoint solution
using transfer functions (i.e.abstract property transformer)
[[bookmark: CITEHecht77-1]67]. Instead of comparing one solution of the static
analysis problem to another one, the theory of abstract interpretation
introduced the idea that the correctness/soundness should be expressed
with respect to a formal semantics. A consequence is that static
analysis algorithms can be specified and designed by approximation of
a program semantics. Moreover, the "fixpoint solution" was shown to
be an abstraction of the "MOP solution". These two solutions coincide
for distributive abstract interpretations (for which abstract
transformers preserve union). Otherwise, the abstract domain used for
the fixpoint solution can be minimally enriched into its
disjunctive completion to get exactly the "MOP solution" in
fixpoint form (on the completed abstract domain)
[[bookmark: CITECousotCousot79-1-POPL]26].

 [bookmark: tth_sEc3.4]
3.4Standard and collecting semantics

The collecting semantics or non-standard semantics
(after the static semantics of [[bookmark: CITECousotCousot77-1-POPL]22]) is
the semantics of the language formally defining the program execution
properties of interest to be analyzed by abstraction. These program
executions themselves are formalized by the standard semantics.

For example in [[bookmark: CITECousotCousot77-1-POPL]22], the standard semantics is
an operational semantics. The concrete properties of interest are invariance
properties so the collecting semantics defines the reachable states
from initial states. This collecting semantics is expressed as the
least fixpoint of equations using strongest postcondition
transformers. Thus the considered abstractions provide abstract
invariance properties (overapproximating the reachable states).

 [bookmark: tth_sEc3.5]
3.5Galois connection

Galois connections can be used when the abstract domain always offers
a most precise approximation of any concrete property
[[bookmark: CITECousotCousot79-1-POPL]26]. Indeed the Galois connections
introduced in [[bookmark: CITECousotCousot76-1-ISOP]21,[bookmark: CITECousotCousot77-1-POPL]22] are
the semi-dual of the one introduced by Évariste Galois, and so do
compose (the abstraction of an abstraction is an abstraction).
Equivalent presentations involve closure operators, ideals,
congruences, etc [[bookmark: CITECousotCousot79-1-POPL]26].

An interesting consequence of the existence of the best abstraction of
concrete properties is the existence of best/most precise
transformers, which provides guidelines for their [automatic] design
[[bookmark: CITECousot99-3-Marktoberdorf-paper]17]. Moreover by abstracting
fixpoints by fixpoints, static analysis is specified by an abstract
semantics expressed in fixpoint form whereas a static analyzer is an
algorithm for computing or overapproximating this fixpoint.

There are several alternative formalizations in absence of best
approximations [[bookmark: CITEMycroftJones86-1]94], [[bookmark: CITECousotCousot92-3-JLC]30].

 [bookmark: tth_sEc3.6]
3.6Moore family, Closure operators

If the correspondance between the concrete and abstract properties is
given by a Galois connection, then the image of the abstract
properties in the concrete is a Moore family, which is the
image of the concrete properties by a closure operator
[[bookmark: CITECousotCousot79-1-POPL]26]. The formalization of the abstraction by
closure operators is useful to abstract away from the representation
of the concrete properties. Other equivalent formalizations of the
existence of the best abstraction of concrete properties include
principal ideals, complete join congruences, etc
[[bookmark: CITECousotCousot79-1-POPL]26].

 [bookmark: tth_sEc3.7]
3.7Moore completion

[bookmark: sec:Moorecompletion]

If an abstract domains has no best approximations for some concrete
properties its Moore completion is the most abstract abstract
domain more expressive than the original abstract domain which has
this property [[bookmark: CITECousotCousot79-1-POPL]26]. This introduces a Galois
connection.

 [bookmark: tth_sEc3.8]
3.8Fixpoints

Most program properties can be expressed as fixpoints of monotone or
extensive property transformers, a property preserved by abstraction
[[bookmark: CITECousotCousot79-1-POPL]26]. This reduces program analysis to
fixpoint approximation and verification to fixpoint checking
[[bookmark: CITECousotCousot77-1-POPL]22].

 [bookmark: tth_sEc3.9]
3.9Inference rules

Most (concrete and abstract) program properties can also be expressed
using inference rules, which indeed is equivalent to definitions
using fixpoints, equations, constraints, etc
[[bookmark: CITECousotCousot95-4-CAV]34]. This point of view has the advantage of
separating the design of an (abstract) semantics (or a static
analysis) from its formal presentation.

 [bookmark: tth_sEc3.10]
3.10Iteration

A standard method for fixpoints construction is iteration. This can
be extended to transfinite iterations to prove Tarski's fixpoint
theorem [[bookmark: CITECousotCousot79-3]25]. In practice one can accelerate the
fixpoint computation using appropriate iteration strategies formalized
as chaotic/asynchronous iterations [[bookmark: CITECousot78-1-TheseEtat]14]. This
extends to higher-order
[[bookmark: CITECousotCousot77-3]24], [[bookmark: CITEJonesRosendahl97-jflp]74].

 [bookmark: tth_sEc3.11]
3.11Convergence acceleration by widening/narrowing

Convergence acceleration is mandatory in infinite abstract domains in
which the iterative computation of abstract fixpoints may diverge.
Widenings/narrowings and their duals are universal methods to do so
[[bookmark: CITECousotCousot77-1-POPL]22,[bookmark: CITECousot78-1-TheseEtat]14]. This extends to
higher-order [[bookmark: CITECousotCousot77-3]24,[bookmark: CITEBourdoncle-FMPA93]6].

 [bookmark: tth_sEc3.12]
3.12Constraint resolution

Thanks to Tarski's theorem, fixpoints can be re-expressed as equality
or inequality constraints whence static analysis can be equally viewed
as a fixpoint approximation or as a constraint resolution problem.
Some constraint resolution methods are mere fixpoint iteration (e.g.set-based analysis [[bookmark: CITECousotCousot95-3-FPCA]35]).

 [bookmark: tth_sEc3.13]
3.13Modularity

The static analysis of programs by parts [[bookmark: CITECousotCousot-CC02]37].
This includes separate interprocedural analysis
[[bookmark: CITECousotCousot77-3]24].

 [bookmark: tth_sEc3.14]
3.14Abstract domain combination

The design of abstractions can be done by parts, by choosing basic
abstractions and then by composing them using abstract domain
combinators [[bookmark: CITECousotCousot79-1-POPL]26]. This provides a unifying
view on abstract domain design [[bookmark: CITEFileGiacobazziRanzato96-1survey]52].

There are numerous examples of such abstract domain combinations
including the reduced sum, the reduced product and the
reduced power [[bookmark: CITECousotCousot79-1-POPL]26].

 [bookmark: tth_sEc3.15]
3.15Refinement

The enrichment of an abstract domain so has to express in the refined
domain properties which cannot be expressed in the original domain.
Examples are the Moore completion Sec.3.7, partitioning
[[bookmark: CITECousot81-1-MuchnickJones]15,[bookmark: CITEBourdoncle92-1]5,[bookmark: CITEMauborgneRival05-ESOP]79], [[bookmark: CITEJeannetHalbwachsRaymond-SAS-99]69],
the disjunctive completion
[[bookmark: CITECousotCousot79-1-POPL]26], [[bookmark: CITEFileRanzato-TCS99]53], the Heyting
completion [[bookmark: CITEGiacobazziScozzari-TOPLAS-98]59],
complementation
[[bookmark: CITECortesiFileGiacobazziPalamidessiRanzato97]13], etc.

 [bookmark: tth_sEc3.16]
3.16Completion

The refinement of an abstract domain into the most abstract abstract
domain which is precise enough to prove a given specification
[[bookmark: CITECousotCousot79-1-POPL]26], [[bookmark: CITEMycroft93-1]93,[bookmark: CITEGiacobazziRanzato97-amast]57,[bookmark: CITEGiacobazziRanzatoScozzari-JACM-00]58,[bookmark: CITESchmidt-APLAS06]104].

 [bookmark: tth_sEc3.17]
3.17Lattice of abstract interpretations

A consequence of the formalization of static analyses by Galois
connections is that they can be organized into a complete lattice
according to the partial order of their relative precisions
[[bookmark: CITECousotCousot79-1-POPL]26]. All semantics and analyses are
present in this formally defined lattice and so it remains to find the
useful ones, which is the real question!

[bookmark: tth_sEc4]
4Examples of abstract-interpretation-based static analyses

 [bookmark: tth_sEc4.1]
4.1Numerical Analysis

Contrary to dataflow analyses on lattices satisfying the
ascending/descending chain condition in the seventies, the
generalization to precise static analyses using numerical domains such
as intervals [[bookmark: CITECousotCousot76-1-ISOP]21], octagons
[[bookmark: CITEMine01-pado2]83] or polyhedra are
in infinite abstract domains whence required the introduction of new
widening-based iteration convergence acceleration methods to become
effective.

 [bookmark: tth_sEc4.2]
4.2Interval analysis

The analysis of the interval in which the values of variables do range
[[bookmark: CITECousotCousot76-1-ISOP]21,[bookmark: CITECousotCousot77-1-POPL]22].

 [bookmark: tth_sEc4.3]
4.3Octagonal analysis

The analysis of the octagon in which the values of pairs of variables
do range (that is the determination of constraints of the form +/-x+/-y ≤c where x and y are variables and c a rational
constant automatically discovered by the analysis)
[[bookmark: CITEMine01-pado2]83,[bookmark: CITEMine02-sas]84,[bookmark: CITEMine-HOSC06]85].

 [bookmark: tth_sEc4.4]
4.4Polyhedral analysis

The analysis of the polyhedron in which the values of tuples of
variables do range. This abstract interpretation can be used for the
automatic discovery of invariant linear inequalities among numerical
variables of a program [[bookmark: CITECousotHalbwachs78-1-POPL]44].

Delay analysis in synchronous programs [[bookmark: CITEHalbwachs93-1]64], safety
analysis of reactive systems [[bookmark: CITEHalbwachs94-1]65], quantitative time
properties of synchronous programs, and linear hybrid systems
[[bookmark: CITEHalbwachsProyRoumanoff97-1]66] are among the many applications.

 [bookmark: tth_sEc4.5]
4.5Congruence analysis

The analysis of the congruence invariants satisfied by the values of
one [[bookmark: CITEGranger89-1]62] or several numerical
variables [[bookmark: CITEMine02-sas]84].

 [bookmark: tth_sEc4.6]
4.6Roundoff error analysis

The analysis of the origin of roundoff errors in floating point
computations [[bookmark: CITEGoubaultMartelPutot02-ESOP]60,[bookmark: CITEMartel-VMCAI05]77].

 [bookmark: tth_sEc4.7]
4.7Symbolic analysis

The analysis of symbolic properties of programs, usually as opposed to
numerical program properties e.g.heap reachability analysis
[[bookmark: CITECousotCousot77-2]23,[bookmark: CITECousotCousot77-3]24]. Also understood as the
symbolic representation of abstract domains, which is almost always
the case, since abstract properties cannot generally be simplistically
represented as the set of concrete values which have this property
(except in enumerative model-checking [[bookmark: CITEClarkeGrumbergPeled99-1]10]).

 [bookmark: tth_sEc4.8]
4.8Strictness and comportment analysis

Strictness analysis determines whether a parameter in a lazy language
is always evaluated in a procedure call or this call does not
terminate. This information is useful to replace a call-by-need by a
more efficient call by value [[bookmark: CITEMycroft80-1]91]. Introduced by Alan Mycroft
[[bookmark: CITEMycroft81-1]92], this analysis was at the origin of the use of abstract
interpretation in the functional language community
[[bookmark: CITEAbramskyHankin87-1]1,[bookmark: CITEJonesNielson95-1]73]. Strictness analysis
[[bookmark: CITEBurnHankinAbramsky86-1]8,[bookmark: CITENielson-POPL87]95] can be embedded in the lattice of
comportment analyses [[bookmark: CITECousotCousot94-1-ICCL]33].

 [bookmark: tth_sEc4.9]
4.9Mode inference/groundness/sharing analysis

The necessity of optimizing Prolog implementations, in particular the
occur checks during unification, is at the origin of the use of
abstract interpretation for the static analysis of Prolog
[[bookmark: CITEMellish86-1]80,[bookmark: CITEDebrayWarren86-2]45,[bookmark: CITESondergaard86-1]107,[bookmark: CITEMannilaUkkonen87-1]75,[bookmark: CITEMarriottSondergaard88-1]76,[bookmark: CITEMuthukumarHermenegildo89-1]90,[bookmark: CITEBruynooghe91-1]7,[bookmark: CITECortesiFile91-1]12,[bookmark: CITEBarbutiEtAl93-1]2],
[[bookmark: CITECousotCousot92-2-JLP]29].

 [bookmark: tth_sEc4.10]
4.10Aliasing and pointer analysis

The static analysis of imperative programs must take accesses and side
effects through aliases and pointers into account
[[bookmark: CITECousotCousot77-2]23]. The profuse literature on pointer analysis
is surveyed in [[bookmark: CITEDeutsch95-1]46,[bookmark: CITEHind-PASTE01]68].

 [bookmark: tth_sEc4.11]
4.11Escape analysis

Escape analysis is a static analysis that determines whether the
lifetime of data exceeds its static scope
[[bookmark: CITEParkGoldberg-PLDI92]96,[bookmark: CITEDeutsch97-1]47], [[bookmark: CITEBlanchet-TOPLAS03]4].

 [bookmark: tth_sEc4.12]
4.12Heap analysis

Heap analysis consists in overapproximating the sets of sequences of
graphs representing the memory heap at all time instants during
execution. Applications range from memory leak detection to
shape analysis that is the determination of the shape of data
structures allocated on the heap [[bookmark: CITESagivRepsWilhelm00-CC]103,[bookmark: CITERinetzkyEtAl-POPL05]102].

 [bookmark: tth_sEc4.13]
4.13Concurrency analysis

The static analysis of concurrent programs from shared-memory
[[bookmark: CITECousotCousot84-1-BiermannGuihoKodratoff]28] to [a]synchronous
communication [[bookmark: CITECousotCousot80-1-ICALP]27], a vast and difficult
subject, with few analyses that do scale up.

 [bookmark: tth_sEc4.14]
4.14Mobility analysis

The analysis of dynamically allocated mobile processes (such as the
pi-calculus). This involves the overapproximation of the set of
sequences of graphs representing the process allocations and
communications at all time instants during execution
[[bookmark: CITEVenet98-1]109,[bookmark: CITEFeret-SAS01]51].

 [bookmark: tth_sEc4.15]
4.15Control flow analysis (CFA)

Control flow analysis aims at determining the possible flows of
computation in higher-order functional languages [[bookmark: CITEJones-ICALP81]70,[bookmark: CITEShivers-Signot04]106].

 [bookmark: tth_sEc4.16]
4.16Probabilistic analysis

The static analysis of probabilistic programs
[[bookmark: CITEMonniaux-SAS-00]86,[bookmark: CITEMonniaux_POPL01]88,[bookmark: CITEMonniaux_ESOP01]89],
[[bookmark: CITEDiPierroHankinWiklicky-JLC05]48].

 [bookmark: tth_sEc4.17]
4.17WCET analysis

The static determination of the worst-case execution time
[[bookmark: CITEFerdinandHeckmannEtAL01-EMSOFT]49] which involves the analysis of
the cache behavior [[bookmark: CITEFerdinandEtAl-SCP99]50], the pipelines, etc.

 [bookmark: tth_sEc4.18]
4.18Hardware analysis

The static analysis of hardware formal descriptions
such as asynchronous circuits [[bookmark: CITEThompsonMycroft-SAS04]108].

 [bookmark: tth_sEc5]
5Libraries of abstract domains

[bookmark: sec:libraries]

The notion of abstract domain in abstract interpretation (see
Sec.3.1) is independent of particular
applications and can be implemented in libraries which can be used as
parts of many different static analyses and even substituted for one
another. Such libraries implement a representation of abstract
properties and algorithms encoding operations on these properties such
as logical operations, property transformers, widenings, etc.

 [bookmark: tth_sEc5.1]
5.1The NewPolka polyhedral library

The
NewPolka
library handles convex polyhedra, whose constraints and generators
have rational coefficients (with C and OCaml interfaces).

 [bookmark: tth_sEc5.2]
5.2The Parma Polyhedra Library (PPL)

The Parma Polyhedra Library (PPL)
is a user-friendly, fully dynamic, portable, exception-safe, and
efficient C++ library to handle convex polyhedra that can be defined
as the intersection of a finite number of (open or closed)
hyperspaces, each described by an equality or inequality (strict or
non-strict) with rational coefficients.

 [bookmark: tth_sEc5.3]
5.3The octagon abstract domain library

The Octagon Abstract Domain
Library is a library for manipulating special kinds of polyhedra
called octagons that correspond to sets of constraints of the form
+/-x +/-y ≤c (where x and y are variables and c a rational
constant and so, in dimension two, these polyhedra have at most eight
faces) [[bookmark: CITEMine-HOSC06]85].

[bookmark: tth_sEc6]
6Abstract-interpretation-based tools

The following list of static analysis and verification automatic tools
provides an idea of the scope of practical applications of abstract
interpretation to software verification (but this list is definitely
not exhaustive). These tools aim at soundness. Since no universal
tool can exist (because of undecidability) such tools are necessarily
incomplete and vary in their capacity to produce very few false alarms and to
scale up to very large programs.

 [bookmark: tth_sEc6.1]
6.1Airac5

A static analyzer from the Programming
Research
Laboratory of the
Seoul
National
University and
RopasWork for automatic detection of
buffer overrun errors in C programs.

 [bookmark: tth_sEc6.2]
6.2aiT WCET Analyzers

Commercial static analyzers from AbsInt
Angewandte Informatik to statically compute tight bounds for the
worst-case execution time (WCET) of tasks in real-time systems.

 [bookmark: tth_sEc6.3]
6.3ASTRÉE

A static analyzer from the École normale
supérieure for proving the absence of runtime errors specialized
for synchronous control/command programs written in C.

 [bookmark: tth_sEc6.4]
6.4C Global
Surveyor

A research prototype static analyzer from the
Intelligent
Systems
Division
at the
NASA
Ames
Research
Center for finding runtime errors in C
programs.

 [bookmark: tth_sEc6.5]
6.5Fluctuat

A static analyzer from CEA-LIST to
study the propagation of rounding errors in floating-point
computations of C or assembler programs.

 [bookmark: tth_sEc6.6]
6.6PolySpace
Verifier

A commercial general-purpose static analyzer of
PolySpace Technologies for detecting
runtime errors in Ada, C, C++, and Java.

 [bookmark: tth_sEc6.7]
6.7TERMINATOR

A static analyzer from
Microsoft
Research Cambridge for proving program termination and general
liveness properties of C programs.

 [bookmark: tth_sEc6.8]
6.8TVLA

TVLA is a research tool developed at
Tel Aviv University for experimenting
with abstract interpretation using a logical description of program
semantics with a predefined abstraction of predicates.

 [bookmark: tth_sEc7]
7Conferences with abstract interpretation sessions

	 Generalist conferences:

	 The Asian
 symposium
 on
 Programming
 Languages
 And
 Systems APLAS'06,

	 The European
Symposium
on
Programming ESOP'07

	 The Annual ACM SIGPLAN-SIGACT symposium on Principles
Of
Programming
Languages POPL'07;

	 Specialized conferences:

	 The International Static
Analysis
Symposium
SAS'06;

	 The International Conference on Verification,
Model
Checking
and
Abstract
Interpretation
VMCAI'07.

 [bookmark: tth_sEc8]
8Short bibliography

 	[bookmark: AbramskyHankin87-1][1]

	
S.Abramsky & C.Hankin, editors. -

 Abstract
 Interpretation
 of
 Declarative
 Languages. -
 Ellis Horwood, 1987, Computers and their Applications.

 	[bookmark: BarbutiEtAl93-1][2]

	
R.Barbuti, R.Giacobazzi & G.Levi. -
 A
 General
 Framework
 for
 Semantics-based
 Bottom-up
 Abstract
 Interpretation
 of
 Logic
 Programs.
 TOPLAS, Vol.15, n&86; 1, Jan. 1993, pp.
 133-181.

 	[bookmark: BerdineEtAl-POPL07][3]

	
J.Berdine, A.Chawdhary, B.Cook, D.Distefano & P.O'Hearn. -
 Variance
 analyses
 from
 invariance
 analyses. In:
 34th POPL, edited by M.F. MartinHofmann, Nice,
 FR, 2007. pp. 211-224. -
 ACM Press.

 	[bookmark: Blanchet-TOPLAS03][4]

	
B.Blanchet. -

 Escape
 Analysis
 for
 JavaTM.
 Theory
 and
 Practice. TOPLAS, Vol.25, n&86; 6, Nov. 2003, pp.
 713-775.

 	[bookmark: Bourdoncle92-1][5]

	
F.Bourdoncle. -
 Abstract
 Interpretation
 by
 Dynamic
 Partitioning.
 J. Func. Prog., Vol.2, n&86; 4, 1992, pp.
 407-435.

 	[bookmark: Bourdoncle-FMPA93][6]

	
F.Bourdoncle. -

 Efficient
 Chaotic
 Iteration
 Strategies
 with
 Widenings.
 In: Proc. FMPA, edited by D.Bjørner, M.Broy & I.Pottosin. Akademgorodok, Novosibirsk, RU, LNCS 735, pp.
 128-141. -
 Springer, 28 June -2 Jul. 1993.

 	[bookmark: Bruynooghe91-1][7]

	
M.Bruynooghe. -

 A
 Practical
 Framework
 for
 the
 Abstract
 Interpretation
 of
 Logic
 Programs. J. Logic Programming,
 Vol.10, n&86; 1,2,3&4, Jan. 1991, pp. 91-124.

 	[bookmark: BurnHankinAbramsky86-1][8]

	
G.Burn, C.Hankin & S.Abramsky. -
 Strictness
 Analysis
 of
 Higher-Order
 Functions. Sci.
 Comput. Programming, Vol.7, Nov. 1986, pp. 249-278.

 	[bookmark: ClarkeEtAl-TOPLAS94][9]

	
E.Clarke, O.Grumberg & D.Long. -
 Model
 Checking
 and
 Abstraction.
 TOPLAS, Vol.16, n&86; 5, Sep. 1994, pp.
 1512-1542.

 	[bookmark: ClarkeGrumbergPeled99-1][10]

	
E.Clarke, O.Grumberg & D.Peled. -
 Model
 Checking. -
 MIT Press, 1999.

 	[bookmark: CominiDamianiVrech08-SAS][11]

	
M.Comini, F.Damiani & S.Vrech. -
 On polymorphic recursion, type systems, and abstract interrpetation.
 In: Proc. 15th Int. Symp.
 SAS'08, edited by M.Alpuente & G.Vidal, pp. 144-158.
 -
 Springer, 2008, Valencia, ES, 16-18 Jul. 2008, LNCS 5079.

 	[bookmark: CortesiFile91-1][12]

	
A.Cortesi & G.Filé. -
 Abstract
 interpretation
 of
 logic
 programs:
 an
 abstract
 domain
 for
 groundness,
 sharing,
 freeness
 and
 compoundness
 analysis.
 In: Proc. PEPM'91, edited by P.Hudak & N.Jones, pp. 52-61. -
 ACM Press, Sep. 1991, Yale U., New Haven, CT, US, 17-19 June
 1991, ACM SIGPLAN Not. 26(9).

 	[bookmark: CortesiFileGiacobazziPalamidessiRanzato97][13]

	
A.Cortesi, G.Filé, R.Giacobazzi, C.Palamidessi & F.Ranzato. -

 Complementation
 in Abstract
 Interpretation. TOPLAS, Vol.19, n&86; 1, Jan.
 1997, pp. 7-47.

 	[bookmark: Cousot78-1-TheseEtat][14]

	
P.Cousot. -
 Méthodes itératives de construction et
 d'approximation de points fixes d'opérateurs
 monotones sur un treillis, analyse sémantique de
 programmes (in French). -
 Grenoble, FR, Thèse d'État ès sciences
 mathématiques, Université scientifique et
 médicale de Grenoble, 21 Mar. 1978.

 	[bookmark: Cousot81-1-MuchnickJones][15]

	
P.Cousot. -

 Semantic
 Foundations
 of
 Program
 Analysis,
 invited
 chapter.
 In: Program Flow Analysis: Theory and Applications,
 edited by S.Muchnick & N.Jones, Chapter10, pp.
 303-342. -
 Prentice-Hall, 1981.

 	[bookmark: Cousot97-1-POPL][16]

	
P.Cousot. -
 Types
 as
 Abstract
 Interpretations, invited
 paper.
 In: 24th POPL, Paris, FR, Jan. 1997.
 pp. 316-331. -
 ACM Press.

 	[bookmark: Cousot99-3-Marktoberdorf-paper][17]

	
P.Cousot. -

 The
 Calculational
 Design of
 a
 Generic
 Abstract
 Interpreter,
 invited
 chapter. In: Calculational System Design, edited by
 M.Broy & R.Steinbrüggen, pp. 421-505. -
 NATO Science Series, Series F: Computer and Systems Sciences. IOS
 Press, 1999, Volume173.

 	[bookmark: Cousot00-SARA][18]

	
P.Cousot. -

 Partial
 Completeness
 of
 Abstract
 Fixpoint
 Checking,
 invited
 paper.
 In: Proc. 4th Int. Symp.
 SARA'2000, edited by B.Choueiry & T.Walsh, pp. 1-25.
 -
 Springer, 26-29 Jul. 2000, Horseshoe Bay, TX, US, LNAI
 1864.

 	[bookmark: Cousot02-TCS][19]

	
P.Cousot. -

 Constructive
 Design
 of
 a
 Hierarchy
 of
 Semantics
 of
 a
 Transition
 System
 by
 Abstract
 Interpretation. Theoret. Comput. Sci., Vol.277, n&86;
 1-2, 2002, pp. 47-103.

 	[bookmark: Cousot03-ZM][20]

	
P.Cousot. -

 Verification
 by
 Abstract
 Interpretation, invited
 chapter.
 In: Proc. Int. Symp. on Verification - Theory &
 Practice - Honoring Zohar Manna's 64th Birthday, edited by
 N.Dershowitz, pp. 243-268. -
 Taormina, IT, LNCS 2772, Springer, 29 June - 4 Jul. 2003.

 	[bookmark: CousotCousot76-1-ISOP][21]

	
P.Cousot & R.Cousot. -
 Static
 determination
 of
 dynamic
 properties
 of
 programs.
 In: Proc. 2nd Int. Symp. on
 Programming, Paris, FR, 1976. pp. 106-130. -
 Dunod.

 	[bookmark: CousotCousot77-1-POPL][22]

	
P.Cousot & R.Cousot. -

 Abstract
 interpretation: a
 unified
 lattice
 model
 for
 static
 analysis
 of
 programs
 by
 construction
 or
 approximation
 of
 fixpoints.
 In: 4th POPL, Los Angeles, CA, 1977. pp.
 238-252. -
 ACM Press.

 	[bookmark: CousotCousot77-2][23]

	
P.Cousot & R.Cousot. -
 Static
 determination
 of
 dynamic
 properties
 of
 generalized
 type
 unions.
 In: ACM Symposium on Language Design for Reliable
 Software, Raleigh, NC, ACM SIGPLAN Not. 12(3):77-94, 1977.

 	[bookmark: CousotCousot77-3][24]

	
P.Cousot & R.Cousot. -
 Static
 determination
 of
 dynamic
 properties
 of
 recursive
 procedures.
 In: IFIP Conf. on Formal Description of Programming
 Concepts, St-Andrews, N.B., CA, edited by E.Neuhold. pp. 237-277. -
 North-Holland, 1977.

 	[bookmark: CousotCousot79-3][25]

	
P.Cousot & R.Cousot. -

 Constructive versions
 of
 Tarski's
 fixed
 point
 theorems.
 Pacific J. Math., Vol.82, n&86; 1, 1979, pp.
 43-57.

 	[bookmark: CousotCousot79-1-POPL][26]

	
P.Cousot & R.Cousot. -

 Systematic
 design
 of
 program
 analysis
 frameworks.
 In: 6th POPL, San Antonio, TX, 1979. pp.
 269-282. -
 ACM Press.

 	[bookmark: CousotCousot80-1-ICALP][27]

	
P.Cousot & R.Cousot. -

 Semantic
 analysis
 of
 communicating
 sequential
 processes.
 In: 7th ICALP, edited by
 J.deBakker & J.van Leeuwen. LNCS 85, pp. 119-133. -
 Springer, Jul. 1980.

 	[bookmark: CousotCousot84-1-BiermannGuihoKodratoff][28]

	
P.Cousot & R.Cousot. -

 Invariance
 Proof
 Methods
 and
 Analysis
 Techniques
 For
 Parallel
 Programs,
 invited
 chapter.
 In: Automatic Program Construction Techniques,
 edited by A.Biermann, G.Guiho & Y.Kodratoff,
 Chapter12, pp. 243-271. -
 Macmillan, 1984.

 	[bookmark: CousotCousot92-2-JLP][29]

	
P.Cousot & R.Cousot. -

 Abstract
 Interpretation
 and
 Application
 to
 Logic
 Programs.
 J. Logic Programming, Vol.13, n&86; 2-3, 1992,
 pp. 103-179. -
 (The editor of J. Logic Programming has mistakenly
 published the unreadable galley proof. For a correct version of this paper,
 see http://www.di.ens.fr/~cousot.).

 	[bookmark: CousotCousot92-3-JLC][30]

	
P.Cousot & R.Cousot. -

 Abstract
 Interpretation
 Frameworks.
 J. Logic and Comp., Vol.2, n&86; 4, Aug.
 1992, pp. 511-547.

 	[bookmark: CousotCousot92-4-PLILP][31]

	
P.Cousot & R.Cousot. -

 Comparing
 the
 Galois
 Connection
 and
 Widening/Narrowing
 Approaches
 to
 Abstract
 Interpretation, invited
 paper.
 In: Proc. 4th Int. Symp. on
 PLILP'92, edited by M.Bruynooghe & M.Wirsing.
 Leuven, BE, 26-28 Aug. 1992, LNCS 631, pp. 269-295. -
 Springer, 1992.

 	[bookmark: CousotCousot92-1-POPL][32]

	
P.Cousot & R.Cousot. -

 Inductive
 Definitions,
 Semantics
 and
 Abstract
 Interpretation. In: 19th POPL, Albuquerque, NM, US,
 1992. pp. 83-94. -
 ACM Press.

 	[bookmark: CousotCousot94-1-ICCL][33]

	
P.Cousot & R.Cousot. -

 Higher-Order
 Abstract
 Interpretation
 (and
 Application
 to
 Comportment
 Analysis
 Generalizing
 Strictness,
 Termination,
 Projection
 and
 PER
 Analysis
 of
 Functional
 Languages),
 invited
 paper.
 In: Proc. 1994 ICCL, Toulouse, FR, 16-19 May 1994.
 pp. 95-112. -
 IEEE Comp. Soc. Press.

 	[bookmark: CousotCousot95-4-CAV][34]

	
P.Cousot & R.Cousot. -

 Compositional
 and
 Inductive
 Semantic
 Definitions
 in
 Fixpoint,
 Equational,
 Constraint,
 Closure-condition, Rule-based
 and
 Game-Theoretic
 Form,
 invited
 paper.
 In: Proc. 7th Int. Conf.
 CAV'95, edited by P.Wolper. Liège, BE, LNCS 939,
 pp. 293-308. -
 Springer, 3-5 Jul. 1995.

 	[bookmark: CousotCousot95-3-FPCA][35]

	
P.Cousot & R.Cousot. -
 Formal
 Language,
 Grammar
 and
 Set-Constraint-Based
 Program
 Analysis
 by
 Abstract
 Interpretation. In: Proc. 7th FPCA, La Jolla, CA, US,
 25-28 June 1995. pp. 170-181. -
 ACM Press.

 	[bookmark: CousotCousot00-POPL][36]

	
P.Cousot & R.Cousot. -

 Temporal
 Abstract
 Interpretation. In: 27th POPL, Boston, MA, US, Jan.
 2000. pp. 12-25. -
 ACM Press.

 	[bookmark: CousotCousot-CC02][37]

	
P.Cousot & R.Cousot. -
 Modular
 Static
 Program
 Analysis,
 invited
 paper.
 In: Proc. 11th Int. Conf.
 CC'2002, edited by R.Horspool, Grenoble, FR, 6-14 Apr. 2002.
 pp. 159-178. -
 LNCS 2304, Springer.

 	[bookmark: CousotCousot02-POPL][38]

	
P.Cousot & R.Cousot. -

 Systematic
 Design
 of
 Program
 Transformation
 Frameworks
 by
 Abstract
 Interpretation. In: 29th POPL, Portland, OR, US, Jan.
 2002. pp. 178-190. -
 ACM Press.

 	[bookmark: CousotCousot03-TCS-parsing][39]

	
P.Cousot & R.Cousot. -

 Parsing
 as
 Abstract Interpretation
 of
 Grammar
 Semantics. Theoret. Comput. Sci., Vol.290, n&86; 1,
 Jan. 2003, pp. 531-544.

 	[bookmark: CousotCousot04-POPL][40]

	
P.Cousot & R.Cousot. -
 An
 Abstract
 Interpretation-Based
 Framework
 for
 Software
 Watermarking.
 In: 31st POPL, Venice, IT, 14-16 Jan.
 2004. pp. 173-185. -
 ACM Press.

 	[bookmark: CousotCousot06-RW][41]

	
P.Cousot & R.Cousot. -

 Grammar
 Analysis
 and
 Parsing
 by
 Abstract
 Interpretation,
 invited
 chapter. In: Program Analysis and Compilation, Theory
 and Practice: Essays dedicated to Reinhard Wilhelm, edited by T.Reps,
 M.Sagiv & J.Bauer, pp. 178-203. -
 Springer, 2006, LNCS 4444.

 	[bookmark: CousotEtAl05-ESOP][42]

	
P.Cousot, R.Cousot, J.Feret, L.Mauborgne, A.Miné, D.Monniaux & X.Rival. -
 The
 ASTRéE analyser.
 In: Proc. 14th ESOP'2005, Edinburg,
 UK, edited by M.Sagiv, pp. 21-30. -
 Springer, 2-10 Apr. 2005, LNCS, Vol.3444.

 	[bookmark: CousotGantyRaskin07-SAS][43]

	
P.Cousot, P.Ganty & J.-F. Raskin. -

 Fixpoint-Guided Abstraction
 Refinements.
 In: Proc. 14th Int. Symp.
 SAS'07, edited by G.Filé & H.Riis-Nielson, pp.
 333-348. -
 Springer, 22-24 Aug. 2007, Kongens Lyngby, DK, LNCS 4634.

 	[bookmark: CousotHalbwachs78-1-POPL][44]

	
P.Cousot & N.Halbwachs. -

 Automatic
 discovery
 of
 linear
 restraints
 among
 variables
 of
 a
 program.
 In: 5th POPL, Tucson, AZ, 1978. pp.
 84-97. -
 ACM Press.

 	[bookmark: DebrayWarren86-2][45]

	
S.Debray & D.Warren. -
 Automatic
 mode
 inferencing
 for
 Prolog
 programs. In:
 Proc. 1986 Int. Symp. on Logic Programming, pp. 78-88. -
 IEEE Comp. Soc. Press, Sep. 1986, Salt Lake City, UT.

 	[bookmark: Deutsch95-1][46]

	
A.Deutsch. -

 Semantic
 models
 and
 abstract
 interpretation
 techniques
 for
 inductive
 data
 structures
 and
 pointers,
 ,
 invited
 paper. In: Proc.
 PEPM'95, La Jolla, CA, 21-23 June 1995. pp. 226-229. -
 ACM Press.

 	[bookmark: Deutsch97-1][47]

	
A.Deutsch. -
 On
 the
 complexity
 of
 escape
 analysis.
 In: 24th POPL, Paris, FR, Jan. 1997.
 pp. 358-371. -
 ACM Press.

 	[bookmark: DiPierroHankinWiklicky-JLC05][48]

	
A.DiPierro, C.Hankin & H.Wiklicky. -
 Probabilistic lambda calculus and quantitative program analysis.
 J. Logic and Comp., Vol.15, n&86; 2, 2005, pp.
 159-179.

 	[bookmark: FerdinandHeckmannEtAL01-EMSOFT][49]

	
C.Ferdinand, R.Heckmann, M.Langenbach, F.Martin, M.Schmidt, H.Theiling,
 S.Thesing & R.Wilhelm. -

 Reliable
 and
 Precise
 WCET
 Determination
 for
 a
 Real-Life
 Processor. In: Proc.
 1st Int. Work. EMSOFT'2001, edited by
 T.Henzinger & C.Kirsch, pp. 469-485. -
 Springer, 2001, LNCS, Vol.2211.

 	[bookmark: FerdinandEtAl-SCP99][50]

	
C.Ferdinand, F.Martin, R.Wilhelm & M.Alt. -
 Cache behavior prediction by abstract interpretation. Sci.
 Comput. Programming, Vol.35, n&86; 1, 1999, pp.
 163-189.

 	[bookmark: Feret-SAS01][51]

	
J.Feret. -
 Abstract
 Interpretation-Based Static
 Analysis
 of
 Mobile
 Ambients.
 In: Proc. 8th Int. Symp.
 SAS'01, edited by P.Cousot. Paris, FR, LNCS 2126, pp.
 413-431. -
 Springer, 16-18 Jul. 2001.

 	[bookmark: FileGiacobazziRanzato96-1survey][52]

	
G.Filè, R.Giacobazzi & F.Ranzato. -

 A
 Unifying
 View
 on
 Abstract
 Domain Design. ACM Computing Surveys, Vol.28, n&86; 2, 1996,
 pp. 333-336.

 	[bookmark: FileRanzato-TCS99][53]

	
G.Filé & F.Ranzato. -
 The
 Powerset
 Operator
 on
 Abstract
 Interpretations.
 Theoret. Comput. Sci., Vol.222, n&86; 1-2,
 Jul. 1999, pp. 77-111.

 	[bookmark: GiacobazziMastroeni03-transfinite][54]

	
R.Giacobazzi & I.Mastroeni. -
 Non-Standard
 Semantics
 for
 Program
 Slicing. Higher-Order
 and Symbolic Computation, Vol.16, n&86; 4, 2003, pp.
 297-339.

 	[bookmark: GiacobazziMastroeni-FORMATS05][55]

	
R.Giacobazzi & I.Mastroeni. -

 Timed Abstract
 Non-Interference. In: Proc. 3rd Int. Conf.
 FORMATS'05, edited by B.LeCharlier, pp. 289-303. -
 Springer, 2005, Uppsala, SE, 26-28 Sep. 2005, LNCS 3829.

 	[bookmark: GiacobazziQuintarelli-SAS01][56]

	
R.Giacobazzi & E.Quintarelli. -

 Incompleteness,
 Counterexamples
 and
 Refinements
 in
 Abstract
 Model-Checking. In: Proc. 8th Int. Symp.
 SAS'01, edited by P.Cousot. Paris, FR, LNCS 2126, pp.
 356-373. -
 Springer, 16-18 Jul. 2001.

 	[bookmark: GiacobazziRanzato97-amast][57]

	
R.Giacobazzi & F.Ranzato. -

 Completeness
 in
 Abstract
 Interpretation:
 A
 Domain
 Perspective. In: Proc. 6th Int. Conf.
 AMAST'97, Sydney, AU, edited by M.Johnson. LNCS,
 Vol.1349, pp. 231-245. -
 Springer, 13-18 Dec. 1997.

 	[bookmark: GiacobazziRanzatoScozzari-JACM-00][58]

	
R.Giacobazzi, F.Ranzato & F.Scozzari. -

 Making
 Abstract Interpretations
 Complete. J. ACM, Vol.47, n&86; 2, 2000, pp. 361-416.

 	[bookmark: GiacobazziScozzari-TOPLAS-98][59]

	
R.Giacobazzi & F.Scozzari. -
 A
 logical
 model
 for
 relational
 abstract
 domains.
 TOPLAS, Vol.20, n&86; 5, 1998, pp. 1067-1109.

 	[bookmark: GoubaultMartelPutot02-ESOP][60]

	
É.Goubault, M.Martel & S.Putot. -
 Asserting the precision of floating-point computations: a simple
 abstract interpreter. In: Proc. 11th
 ESOP'2002, edited by D.LeMétayer, pp. 209-212. -
 Springer, 8-12 Apr. 2002, Grenoble, FR, LNCS 2305.

 	[bookmark: GrafSaidi96-CAV][61]

	
S.Graf & H.Saïdi. -
 Verifying
 Invariants
 Using
 Theorem
 Proving.
 In: Proc. 8th Int. Conf.
 CAV'97, edited by R.Alur & T.Henzinger. New
 Brunswick, NJ, US, LNCS 1102, pp. 196-207. -
 Springer, Jul. 31 - Aug. 3 1996.

 	[bookmark: Granger89-1][62]

	
P.Granger. -
 Static
 Analysis
 of
 Arithmetical
 Congruences.
 Int. J. Comput. Math., Vol.30, 1989, pp.
 165-190.

 	[bookmark: Granger91-1][63]

	
P.Granger. -
 Static
 Analysis
 of
 Linear
 Congruence
 Equalities
 among
 Variables
 of
 a
 Program. In:
 Proc. Int. J. Conf. TAPSOFT'91, Volume 1 (CAAP'91),
 edited by S.Abramsky & T.Maibaum. Brighton, GB, LNCS
 493, pp. 169-192. -
 Springer, 1991.

 	[bookmark: Halbwachs93-1][64]

	
N.Halbwachs. -
 Delay
 Analysis
 in
 Synchronous
 Programs.
 In: Proc. 5th Int. Conf.
 CAV'93, edited by C.Courcoubatis. Elounda, GR, LNCS 697,
 pp. 333-346. -
 Springer, 28 June -1 Jul. 1993.

 	[bookmark: Halbwachs94-1][65]

	
N.Halbwachs. -
 About
 Synchronous
 Programming
 and
 Abstract
 Interpretation.
 In: Proc. 1st Int. Symp.
 SAS'94, edited by B.LeCharlier, pp. 179-192. -
 Springer, 1994, Namur, BE, 20-22 Sep. 1994, LNCS 864.

 	[bookmark: HalbwachsProyRoumanoff97-1][66]

	
N.Halbwachs, Y.Proy & P.Roumanoff. -

 Verification
 of
 real-time
 systems
 using
 linear
 relation
 analysis.
 Formal Methods in System Design, Vol.11, n&86; 2,
 Aug. 1997, pp. 157-185.

 	[bookmark: Hecht77-1][67]

	
M.Hecht. -
 Flow Analysis of Computer Programs. -
 North-Holland/Elsevier, 1977.

 	[bookmark: Hind-PASTE01][68]

	
M.Hind. -
 Pointer
 Analysis:
 Haven't
 We
 Solved
 This
 Problem
 Yet? In:
 2001 ACM SIGPLAN-SIGSOFT Workshop PASTE'01, Snowbird, UT,
 US, 2001.

 	[bookmark: JeannetHalbwachsRaymond-SAS-99][69]

	
B.Jeannet, N.Halbwachs & P.Raymond. -
 Dynamic
 Partitioning
 in
 Analyses
 of
 Numerical
 Properties.
 In: Proc. 6th Int. Symp.
 SAS'99, edited by A.Cortesi & G.Filé, pp. 18-38.
 -
 Springer, 1999, Venice, IT, 22-24 Sep. 1999, LNCS
 1694.

 	[bookmark: Jones-ICALP81][70]

	
N.Jones. -

 Flow
 Analysis
 of
 Lambda
 Expressions
 (Preliminary
 Version). In: 8th ICALP,
 edited by S.Even & O.Kariv. LNCS 115, pp. 114-128.
 -
 Springer, Jul. 1981.

 	[bookmark: Jones-SAS97][71]

	
N.Jones. -

 Combining
 Abstract
 Interpretation
 and
 Partial
 Evaluation
 (Brief
 Overview).
 In: Proc. 4th Int. Symp.
 SAS'97, edited by P.VanHentenryck, pp. 396-405. -
 Springer, 1997, Paris, FR, 8-10 Sep. 1997, LNCS 1302.

 	[bookmark: JonesGomardSestoft93-1][72]

	
N.Jones, C.Gomard & P.Sestoft. -
 Partial Evaluation and Automatic Program Generation. -
 Prentice-Hall, June 1993, Int. Series in
 Computer Science.

 	[bookmark: JonesNielson95-1][73]

	
N.Jones & F.Nielson. -

 Abstract
 interpretation: a
 semantics-based tool
 for
 program
 analysis.
 In: Semantic Modelling, edited by S.Abramsky,
 D.Gabbay & T.Maibaum, Chapter5, pp. 527-636. -
 Clarendon Press, 1995, Handbook of Logic in Computer Science,
 Vol.4.

 	[bookmark: JonesRosendahl97-jflp][74]

	
N.Jones & M.Rosendahl. -

 Higher-Order
 Minimal
 Function
 Graphs.
 J. Func. and Logic Prog., Vol.1997, n&86; 2,
 Feb. 1997.

 	[bookmark: MannilaUkkonen87-1][75]

	
H.Mannila & E.Ukkonen. -
 Flow
 analysis
 of
 Prolog
 programs.
 In: Proc. 1987 Int. Symp. on Logic Programming.
 San Francisco, CA, pp. 205-214. -
 IEEE Comp. Soc. Press, 31 Aug. - 4Sep. 1987.

 	[bookmark: MarriottSondergaard88-1][76]

	
K.Marriott & H.Søndergaard. -
 Bottom-Up
 Abstract
 Interpretation
 of
 Logic
 Programs.
 In: Proc. 5th Int. Conf. & Symp.
 on Logic Programming, Volume 1, edited by R.Kowalski,name
 K.Bowen. Seattle, WA, US, pp. 733-748. -
 MIT Press, 15-19 Aug. 1988.

 	[bookmark: Martel-VMCAI05][77]

	
M.Martel. -
 An
 Overview
 of
 Semantics
 for
 the
 Validation
 of
 Numerical
 Programs.
 In: Proc. 6th Int. Conf. VMCAI
 2005, edited by R.Cousot, Paris, FR, 17-19 Jan. 2005. pp.
 59-77. -
 LNCS 3385, Springer.

 	[bookmark: Mauborgne-SAS-00][78]

	
L.Mauborgne. -
 Tree
 Schemata
 and
 Fair
 Termination.
 In: Proc. 7th Int. Symp.
 SAS'2000, edited by J.Palsberg, pp. 302-321. -
 Springer, 29 June - 1 Jul. 2000, Santa Barbara, CA, US, LNCS
 1824.

 	[bookmark: MauborgneRival05-ESOP][79]

	
L.Mauborgne & X.Rival. -
 Trace
 Partitioning
 in
 Abstract
 Interpretation
 Based
 Static
 Analyzer.
 In: Proc. 14th ESOP'2005, Edinburg,
 UK, edited by M.Sagiv, pp. 5-20. -
 Springer, Apr. 2Ã‘-10, 2005, LNCS, Vol.3444.

 	[bookmark: Mellish86-1][80]

	
C.Mellish. -
 Abstract
 Interpretation
 of
 Prolog
 Programs.
 In: 3rd ICLP'86, edited by
 E.Shapiro, pp. 463-474. -
 Springer, 14-18 Jul. 1986, London, GB, LNCS 225.

 	[bookmark: MidtgaardJensen08-SAS][81]

	
J.Midtgaard & T.Jensen. -
 A calculational approach to control-flow analysis by abstract
 interrpetation. In: Proc. 15th Int.
 Symp. SAS'08, edited by M.Alpuente & G.Vidal, pp.
 347-362. -
 Springer, 2008, Valencia, ES, 16-18 Jul. 2008, LNCS 5079.

 	[bookmark: MightShivers-07-TCS][82]

	
M.Might & .Shivers. -
 Analyzing
 the
 environment
 structure
 of
 higher-order
 languages
 using
 frame
 strings.
 Theoret. Comput. Sci., Vol.375, n&86; 1-3,
 2007, pp. 137-168.

 	[bookmark: Mine01-pado2][83]

	
A.Miné. -
 A
 New
 Numerical
 Abstract
 Domain
 Based
 on
 Difference-Bound
 Matrices.
 In: Proc. 2nd Symp. PADO'2001,
 edited by .Danvy & A.Filinski. Århus, DK, 21-23
 May 2001, LNCS 2053, pp. 155-172. -
 Springer, 2001.

 	[bookmark: Mine02-sas][84]

	
A.Miné. -
 A
 Few
 Graph-Based
 Relational
 Numerical
 Abstract
 Domains.
 In: Proc. 9th Int. Symp.
 SAS'02, edited by M.Hermenegildo & G.Puebla.
 LNCS, Vol.2477, pp. 117-132. -
 Springer, 2002.

 	[bookmark: Mine-HOSC06][85]

	
A.Miné. -
 The
 Octagon
 Abstract
 Domain.
 Higher-Order and Symbolic Computation, Vol.19, 2006,
 pp. 31-100.

 	[bookmark: Monniaux-SAS-00][86]

	
D.Monniaux. -

 Abstract
 interpretation of
 probabilistic semantics.
 In: Proc. 7th Int. Symp.
 SAS'2000, edited by J.Palsberg, pp. 322-339. -
 Springer, 29 June - 1 Jul. 2000, Santa Barbara, CA, US, LNCS
 1824.

 	[bookmark: Monniaux_SAS01][87]

	
D.Monniaux. -
 An
 Abstract
 Analysis
 of
 the
 Probabilistic Termination
 of
 Programs.
 In: Proc. 8th Int. Symp.
 SAS'01, edited by P.Cousot. Paris, FR, LNCS 2126, pp.
 111-127. -
 Springer, 16-18 Jul. 2001.

 	[bookmark: Monniaux_POPL01][88]

	
D.Monniaux. -
 An
 Abstract
 Monte-Carlo Method
 for
 the
 Analysis
 of
 Probabilistic Programs
 (extended
 abstract).
 In: 28th POPL, London, GB, Jan. 2001.
 pp. 93-101. -
 ACM Press.

 	[bookmark: Monniaux_ESOP01][89]

	
D.Monniaux. -

 Backwards
 abstract
 interpretation of
 probabilistic programs.
 In: Proc. 10th ESOP'2001,
 edited by D.Sands. Genova, IT, 2-6 Apr. 2001, LNCS 2028, pp.
 367-382. -
 Springer, 2001.

 	[bookmark: MuthukumarHermenegildo89-1][90]

	
K.Muthukumar & M.Hermenegildo. -
 Determination
 of
 Variable
 Dependence
 Information
 through
 Abstract
 Interpretation.
 In: NACLP 1989, Volume 1, edited by E.Lusk & R.Overbeek. Cleaveland, OH, US, pp. 166-185. -
 MIT Press, 16-20 Oct. 1989.

 	[bookmark: Mycroft80-1][91]

	
A.Mycroft. -

 The
 theory
 and
 practice
 of
 transforming
 call-by-need
 into
 call-by-value. In: Proc. 4th Int. Symp. on
 Programming, edited by B.Robinet, pp. 270-281. -
 Springer, 1980, Paris, FR, 22-24 Apr. 1980, LNCS 83.

 	[bookmark: Mycroft81-1][92]

	
A.Mycroft. -
 Abstract
 Interpretation
 and
 Optimising
 Transformations
 for
 Applicative
 Programs. -
 Edinburg, UK, Ph.D. Dissertation, CST-15-81, Department of
 Computer Science, University of Edinburgh, Dec. 1981.

 	[bookmark: Mycroft93-1][93]

	
A.Mycroft. -

 Completeness
 and
 predicate-based
 abstract
 interpretation. In: Proc. PEPM'93. Copenhagen,
 DK, 14-16 June 1993, pp. 80-87. -
 ACM Press, 1993.

 	[bookmark: MycroftJones86-1][94]

	
A.Mycroft & N.Jones. -
 A
 Relational
 Framework
 for
 Abstract
 Interpretation.
 In: Programs as Data Objects, Proceedings of a Workshop,
 edited by N.Jones & H.Ganzinger, pp. 156-171. -
 Springer, 1986, Copenhagen, DK, 17-19 Oct. 1985, LNCS 215.

 	[bookmark: Nielson-POPL87][95]

	
F.Nielson. -

 Strictness
 Analysis
 and
 Denotational
 Abstract
 Interpretation. In: 14th
 POPL, Munchen, DE, 1987. pp. 120-131. -
 ACM Press.

 	[bookmark: ParkGoldberg-PLDI92][96]

	
Y.G. Park & B.Goldberg. -
 Escape
 analysis
 on
 lists. In:
 Proc. ACM SIGPLAN'92 Conf. PLDI. ACM SIGPLAN Not. 31(5),
 San Francisco, CA, US, 21-24, May 1992. pp. 116-127. -
 ACM Press.

 	[bookmark: Pierce02-TypesBook][97]

	
B.Pierce. -
 Types
 and
 Programming
 Languages. -
 MIT Press, 2002.

 	[bookmark: DallaPredaEtAl-POPL07][98]

	
M.D. Preda, M.Christodorescu, S.Jha & S.Debray. -

 Semantics-Based
 Approach
 to
 Malware
 Detection. In: 34th POPL, Nice, France, 17-19
 Jan. 2007. pp. 238-252. -
 ACM Press.

 	[bookmark: DallaPredaGiacobazzi-SEFM05][99]

	
M.D. Preda & R.Giacobazzi. -
 Control
 Code
 Obfuscation
 by
 Abstract
 Interpretation.
 In: Proc. 3rd IEEEInt. Conf.
 SEFM'05, Koblenz, DE, 2005. -
 IEEE Comp. Soc. Press.

 	[bookmark: Ranzato01-esop01][100]

	
F.Ranzato. -
 On
 the
 Completeness
 of
 Model
 Checking.
 In: Proc. 10th ESOP'2001,
 edited by D.Sands. Genova, IT, 2-6 Apr. 2001, LNCS 2028, pp.
 137-154. -
 Springer, 2001.

 	[bookmark: RanzatoTapparo-06-VMCAI][101]

	
F.Ranzato & F.Tapparo. -
 Strong
 Preservation
 of
 Temporal
 Fixpoint-Based
 Operators
 by
 Abstract
 Interpretation.
 In: Proc. 7th Int. Conf. VMCAI
 2006, edited by A.Emerson & K.Namjoshi, Charleston, SC,
 US, 8-10 Jan. 2006. pp. 332-347. -
 LNCS 3855 , Springer.

 	[bookmark: RinetzkyEtAl-POPL05][102]

	
N.Rinetzky, J.Bauer, T.Reps, S.Sagiv & R.Wilhelm. -

 A
 semantics for
 procedure local
 heaps
 and
 its
 abstractions. In: 32nd POPL, Long Beach, CA, US,
 2005. pp. 296-309. -
 ACM Press.

 	[bookmark: SagivRepsWilhelm00-CC][103]

	
M.Sagiv, T.Reps & R.Wilhelm. -
 Shape
 Analysis.
 In: Proc. Int. Conf. CC'2000, LNCS 1781,
 edited by D.A. Watt, Berlin, DE, 25 Mar. - 2 Apr. 2000. pp.
 1-17. -
 Springer.

 	[bookmark: Schmidt-APLAS06][104]

	
D.Schmidt. -

 Comparing
 completeness
 properties
 of
 static
 analyses
 and
 their
 logics.
 In: Proc. 4th APLAS'2006,
 edited by N.Kobayashi, Sydney, AU, 8-10 Nov. 2006. pp.
 183-199. -
 LNCS 4279, Springer.

 	[bookmark: Shivers-88-PLDI][105]

	
O.Shivers. -

 Control-Flow
 Analysis
 in
 Scheme. In: Proc. ACM SIGPLAN'1988
 Conf. PLDI. ACM SIGPLAN Not. 23(7), Atlanta, GE, US, 22-24 June
 1988. pp. 164-174. -
 ACM Press.

 	[bookmark: Shivers-Signot04][106]

	
O.Shivers. -

 Higher-order
 control-flow
 analysis
 in
 retrospect:
 lessons
 learned,
 lessons
 abandoned. ACM SIGPLAN Not.,
 Vol.39, n&86; 4, 2004, pp. 257-269.

 	[bookmark: Sondergaard86-1][107]

	
H.Søndergaard. -
 An
 Application
 of
 Abstract
 Interpretation
 of
 Logic
 Programs:
 Occur
 Check
 Reduction.
 In: Proc. ESOP'86, edited by B.Robinet & R.Wilhelm, pp. 327-338. -
 Springer, 1986, Saarbrücken, DE, 17-19 Mar. 1986,
 LNCS 213.

 	[bookmark: ThompsonMycroft-SAS04][108]

	
S.Thompson & A.Mycroft. -
 Abstract
 Interpretation
 of
 Combinational
 Asynchronous
 Circuits.
 In: Proc. 11th Int. Symp.
 SAS'04, edited by R.Giacobazzi. Verona, IT, LNCS 3148,
 pp. 181-196. -
 Springer, 26-28 Aug. 2004.

 	[bookmark: Venet98-1][109]

	
A.Venet. -
 Automatic
 Determination
 of
 Communication
 Topologies
 in
 Mobile
 Systems.
 In: Proc. 5th Int. Symp.
 SAS'98, edited by G.Levi, pp. 152-167. -
 Springer, 1998, Pisa, IT, 14-16 Sep. 1998, LNCS 1503.

PDF version.

This document is hopefully sound, may be too abstract and necessarily
incomplete. Amendments are welcomed at
Patrick.Cousot@ens.fr.

Footnotes:

[bookmark: tthFtNtAAB]1MOP
often stands for "Meet Over all Path" where the abstract meet
corresponds to a concrete join, the order in dataflow analysis often
being the inverse of the one used in abstract interpretation, whence
corresponds to a concrete inverse logical implication, which may
sometimes be counter-intuitive.
