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ImageNet Classification with Deep Convolutional Neural Networks

Abstract

We trained a large, deep convolutional neural
network to classify the 1.2 million high-resolution
images in the ImageNet LSVRC-2010 contest into
the 1000 different classes. On the test data, we
achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the
previous state-of-the-art. The neural network,
which has 60 million parameters and 650,000
neurons, consists of five convolutional layers,
some of which are followed by max-pooling
layers, and three fully-connected layers with a
final 1000-way softmax. To make training faster,
we used non-saturating neurons and a very
efficient GPU implementation of the convolution
To reduce the

operation. overfitting in

fully-connected layers we employed a

recently-developed regularization method called
“dropout” that proved to be very effective. We
also entered a variant of this model in the
ILSVRC-2012 competition and achieved a
winning top-5 test error rate of 15.3%, compared

to 26.2% achieved by the second-best entry.
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1 Introduction

Current approaches to object recognition make
essential use of machine learning methods. To
improve their performance, we can collect larger
datasets, learn more powerful models, and use
better techniques for preventing overfitting. Until
recently, datasets of labeled images were
relatively small — on the order of tens of
of (e.e, NORB [16],

Caltech-101/256 [8, 9], and CIFAR-10/100 [12]).

thousands images

Simple recognition tasks can be solved quite well

with datasets of this size, especially if they are
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augmented with label-preserving
transformations. For example, the current best
error rate on the MNIST digit-recognition task
(<0.3%) approaches human performance [4]. But
objects in realistic settings exhibit considerable
variability, so to learn to recognize them it is
necessary to use much larger training sets. And
indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al.
[21]), but it has only recently become possible to
collect labeled datasets with millions of images.
The new larger datasets include LabelMe [23],
which consists of hundreds of thousands of
fully-segmented images, and ImageNet [6], which
15  million labeled

consists of over

high-resolution images in over 22,000 categories.
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To learn about thousands of objects from millions of
images, we need a model with alarge learning
capacity. However, the immense complexity of the
object recognition task means that this problem
cannot be specified even by a dataset aslarge as
ImageNet, so our model should also have lots of
prior knowledge to compensate for all the data we
don’t have. Convolutional neural networks (CNNSs)
constitute one such class of models[16, 11, 13, 18,
15, 22, 26]. Their capacity can be con- trolled by
varying their depth and breadth, and they also make
strong and mostly correct assumptions about the
nature of images (namely, stationarity of statistics
and locality of pixel dependencies). Thus, compared
to standard feedforward neural networks with
similarly-sized layers, CNNs have much fewer
connections and parameters and so they are easier to
train, while their theoretically-best performanceis

likely to be only slightly worse.

NT INE TR E R I BT Ak, T4
TR KE TR I AL, SAT, PR
P55 W e 1R B0 B2 R G R4S ImageNet iX
LRIEEER, XA 1] AR HE o B . BT R
FRATT ARt 7R 2R &SR IR AR E AN BT A Rk
Ml . BRMZRMZ (CNNs) & —FiiX R
#1[16, 11, 13, 18, 15, 22, 26]. ‘EATHI2= 3 eS0T LA
e Tk 7 1) O 4% ) 6 PR R B SR TR RS, AT T T DA
SRR CGRZErE) 8 ss ok H AL A v
W (GEik ERIRSENE, BLAUR BRI &
PERHE) o DR, 5 RVRE /N b o B A4t
ZMFHEL, CNNsHH/DWiER:. 24, TR Y
TN, 1MiH CNNs FIHE S 5 AR B LL ATt pf
LM 2




Despite the attractive qualities of CNNs, and
despite the relative efficiency of their local
architecture, they have still been prohibitively
expensive to apply in large scale to
high-resolution images. Luckily, current GPUs,
paired with a highly-optimized implementation of
2D convolution, are powerful enough to facilitate
the training of interestingly-large CNNs, and
recent datasets such as ImageNet contain enough
labeled examples to train such models without

severe overfitting.
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The specific contributions of this paper are as

follows: we trained one of the Ilargest
convolutional neural networks to date on the
subsets of ImageNet used in the ILSVRC-2010 and
ILSVRC-2012 competitions [2] and achieved by
far the best results ever reported on these
datasets. We wrote a highly-optimized GPU
implementation of 2D convolution and all the
other  operations inherent in  training
convolutional neural networks, which we make
available publicly. Our network contains a
number of new and unusual features which
improve its performance and reduce its training
time, which are detailed in Section 3. The size of
our network made overfitting a significant
problem, even with 1.2 million labeled training
examples, so we used several effective techniques
for preventing overfitting, which are described in
Section 4. Our final network contains five
convolutional and three fully-connected layers,
and this depth seems to be important: we found
that removing any convolutional layer (each of
which contains no more than 1% of the model’s

parameters) resulted in inferior performance.
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In the end, the network’s size is limited mainly by
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the amount of memory available on current GPUs
and by the amount of training time that we are
willing to tolerate. Our network takes between
five and six days to train on two GTX 580 3GB
GPUs. All of our experiments suggest that our
results can be improved simply by waiting for
faster GPUs and bigger datasets to become

available.
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2 The Dataset

ImageNet is a dataset of over 15 million labeled
high-resolution images belonging to roughly
22,000 categories. The images were collected
from the web and labeled by human labelers
using Amazon’s Mechanical Turk crowd-sourcing
tool. Starting in 2010, as part of the Pascal Visual
Object Challenge, an annual competition called
the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) has been held. ILSVRC uses a
subset of ImageNet with roughly 1000 images in
each of 1000 categories. In all, there are roughly
1.2 million training images, 50,000 validation

images, and 150,000 testing images.
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ILSVRC-2010 is the only version of ILSVRC for
which the test set labels are available, so this is
the version on which we performed most of our
experiments. Since we also entered our model in
the ILSVRC-2012 competition, in Section 6 we
report our results on this version of the dataset as
well, for which test set labels are unavailable. On
ImageNet, it is customary to report two error
rates: top-1 and top-5, where the top-5 error rate
is the fraction of test images for which the correct
label is not among the five labels considered most

probable by the model.
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ImageNet consists of variable-resolution images,

while our system requires a constant input
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dimensionality. Therefore, we down-sampled the
images to a fixed resolution of 256X256. Given a
rectangular image, we first rescaled the image
such that the shorter side was of length 256, and
then cropped out the central 256X256 patch from
the resulting image. We did not pre-process the
images in any other way, except for subtracting
the mean activity over the training set from each
pixel. So we trained our network on the

(centered) raw RGB values of the pixels.
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3 The Architecture

The architecture of our network is summarized in
Figure 2. It contains eight learned layers — five
convolutional and three fully-connected. Below,
we describe some of the novel or unusual
features of our network’s architecture. Sections
3.1-3.4 are sorted according to our estimation of

their importance, with the most important first.

3 MAEREN

P28 R RE R 2, B0 8 Ml E—T
PMERZ 3 DMEEEZ. K, BANTHE L&
FATTH 3 258 A K, B8 A LI 4544 - 3.1~3.4
R FATT O H A X e AT E A A VAl AT

3.1 ReLU Nonlinearity

The standard way to model a neuron’s output f as
a function of its input x is with f(x) = tanh(x) or
f(x) = (1 + eX) 1. In terms of training time with
gradient descent, these saturating nonlinearities
are much slower than the non-saturating
nonlinearity f(x) = max(0,x). Following Nair and
Hinton [20], we refer to neurons with this
nonlinearity as Rectified Linear Units (ReLUs).
Deep convolutional neural networks with ReLUs
train several times faster than their equivalents
with tanh units. This is demonstrated in Figure 1,
which shows the number of iterations required to
reach 25% training error on the CIFAR-10 dataset
for a particular four-layer convolutional network.
This plot shows that we would not have been able

to experiment with such large neural networks

for this work if we had used traditional saturating
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neuron models.

We are not the first to consider alternatives to
traditional neuron models in CNNs. For example,
Jarrett et al. [11] claim that the nonlinearity f (x)
= |tanh(x)| works particularly well with their type
of contrast normalization followed by local
average pooling on the Caltech-101 dataset.
However, on this dataset the primary concern is
preventing overfitting, so the effect they are
observing is different from the accelerated ability
to fit the training set which we report when using
ReLUs. Faster learning has a great influence on
the performance of large models trained on large

datasets.
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3.2 Training on Multiple GPUs
A single GTX 580 GPU has only 3GB of memory,

which limits the maximum size of the networks
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that can be trained on it. It turns out that 1.2
million training examples are enough to train
networks which are too big to fit on one GPU.
Therefore we spread the net across two GPUs.
Current GPUs are particularly well-suited to
cross-GPU parallelization, as they are able to read
from and write to one another’s memory directly,
without going through host machine memory.
The parallelization scheme that we employ
essentially puts half of the kernels (or neurons)
on each GPU, with one additional trick: the GPUs
communicate only in certain layers. This means
that, for example, the kernels of layer 3 take input
from all kernel maps in layer 2. However, kernels
in layer 4 take input only from those kernel maps
in layer 3 which reside on the same GPU.
Choosing the pattern of connectivity is a problem
for cross-validation, but this allows us to
precisely tune the amount of communication until
it is an acceptable fraction of the amount of

computation.
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The resultant architecture is somewhat similar to
that of the “columnar” CNN employed by Ciresan
et al. [5], except that our columns are not
independent (see Figure 2). This scheme reduces
our top-1 and top-5 error rates by 1.7% and
1.2%, respectively, as compared with a net with
half as many kernels in each convolutional layer
trained on one GPU. The two-GPU net takes

slightly less time to train than the one-GPU net.
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3.3 Local Response Normalization

ReLUs have the desirable property that they do
not require input normalization to prevent them
from saturating. If at least some training
examples produce a positive input to a ReLU,

learning will happen in that neuron. However, we
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still find that the following local normalization
scheme aids generalization. Denoting by aixy the
activity of a neuron computed by applying kernel
i at position (x, y) and then applying the ReLU
nonlinearity, the response-normalized activity

biyy is given by the expression
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where the sum runs over n “adjacent” kernel
maps at the same spatial position, and N is the
total number of kernels in the layer. The ordering
of the kernel maps is of course arbitrary and
determined before training begins. This sort of
response normalization implements a form of
lateral inhibition inspired by the type found in
real neurons, creating competition for big
activities amongst neuron outputs computed
using different kernels. The constants k, n, @,
and B are hyper-parameters whose values are
determined using a validation set; we used k = 2,
n=5 a=10%and 9B =0.75. We applied this
the ReLU

normalization  after

applying

nonlinearity in certain layers (see Section 3.5).
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This scheme bears some resemblance to the local
contrast normalization scheme of Jarrett et al.
[11], but ours would be more correctly termed
“brightness normalization”, since we do not
subtract the mean  activity. = Response
normalization reduces our top-1 and top-5 error
rates by 1.4% and 1.2%, respectively. We also
verified the effectiveness of this scheme on the
CIFAR-10 dataset: a four-layer CNN achieved a
13% test error rate without normalization and

11% with normalization.
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3.4 Overlapping Pooling

Pooling layers in CNNs summarize the outputs of
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neighboring groups of neurons in the same kernel

map. Traditionally, the neighborhoods
summarized by adjacent pooling units do not
overlap (e.g., [17, 11, 4]). To be more precise, a
pooling layer can be thought of as consisting of a
grid of pooling units spaced s pixels apart, each
summarizing a neighborhood of size z * z
centered at the location of the pooling unit. If we
set s = z, we obtain traditional local pooling as
commonly employed in CNNs. If we set s < z, we
obtain overlapping pooling. This is what we use
throughout our network, with s = 2 and z = 3. This
scheme reduces the top-1 and top-5 error rates
by 0.4% and 0.3%, respectively, as compared
with the non-overlapping scheme s = 2, z = 2,
which produces output of equivalent dimensions.
We generally observe during training that models
with overlapping pooling find it slightly more

difficult to overfit.
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3.5 Overall Architecture

Now we are ready to describe the overall
architecture of our CNN. As depicted in Figure 2,
the net contains eight layers with weights; the
first five are convolutional and the remaining
three are fully- connected. The output of the last
fully-connected layer is fed to a 1000-way
softmax which produces a distribution over the
1000 class labels. Our network maximizes the
multinomial logistic regression objective, which is
equivalent to maximizing the average across
training cases of the log-probability of the correct

label under the prediction distribution.
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The kernels of the second, fourth, and fifth
convolutional layers are connected only to those
kernel maps in the previous layer which reside on

the same GPU (see Figure 2). The kernels of the
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third convolutional layer are connected to all
kernel maps in the second layer. The neurons in
the fully-connected layers are connected to all
neurons in the previous layer.
Response-normalization layers follow the first
and second convolutional layers. Max-pooling
layers, of the kind described in Section 3.4, follow
both response-normalization layers as well as the
fifth convolutional layer. The ReLU non-linearity
is applied to the output of every convolutional

and fully-connected layer.
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The first convolutional layer filters the 224 X
224 X 3 input image with 96 kernels of size 11
X 11 X 3 with a stride of 4 pixels (this is the
distance between the receptive field centers of
neighboring neurons in a kernel map). The
second convolutional layer takes as input the
(response-normalized and pooled) output of the
first convolutional layer and filters it with 256
kernels of size 5 X 5 X 48. The third, fourth,
and fifth convolutional layers are connected to
one another without any intervening pooling or
normalization layers. The third convolutional
layer has 384 kernels of size 3 X 3 X 256
connected to the (normalized, pooled) outputs of
the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 X
3 X 192, and the fifth convolutional layer has
256 Kkernels of size 3 X 3 X 192. The

fully-connected layers have 4096 neurons each.
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Figure 2: An illustration of the architecture of our

CNN, explicitly showing the delineation of
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responsibilities between the two GPUs. One GPU
runs the layer-parts at the top of the figure while
the other runs the layer-parts at the bottom. The
GPUs communicate only at certain layers. The
network’s input is 150,528-dimensional, and the
number of neurons in the network’s remaining
layers is given by 253,440-186,624-64,896-
64,896-43,264- 4096-4096-1000.

W& N2 150,528 4, MERFEIANESN, &
THENEREM=A2EEE 7 5H 253440,
186624, 64896, 64896, 43264, 4096, 4096,
1000 MHHZ T

4 Reducing Overfitting

Our neural network architecture has 60 million
parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of
constraint on the mapping from image to label,
this turns out to be insufficient to learn so many
parameters without considerable overfitting.

Below, we describe the two primary ways in

which we combat overfitting.
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4.1 Data Augmentation
The easiest and most common method to reduce
overfitting on image data is to artificially enlarge

the dataset using label-preserving

transformations (e.g., [25, 4, 5]). We employ two
distinct forms of data augmentation, both of
which allow transformed images to be produced
from the original images with very little
computation, so the transformed images do not
need to be stored on disk. In our implementation,
the transformed images are generated in Python
code on the CPU while the GPU is training on the
batch of So these data

previous images.

augmentation schemes are, in effect,

computationally free.
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The first form of data augmentation consists of
generating image translations and horizontal
reflections. We do this by extracting random 224

X 224 patches (and their horizontal reflections)
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from the 256X256 images and training our
network on these extracted patches. This
increases the size of our training set by a factor of
2048, though the resulting training examples are,
of course, highly interdependent. Without this
scheme, our network suffers from substantial
overfitting, which would have forced us to use
much smaller networks. At test time, the network
makes a prediction by extracting five 224 x 224
patches (the four corner patches and the center
patch) as well as their horizontal reflections
(hence ten patches in all), and averaging the

predictions made by the network’s softmax layer

on the ten patches.
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The second form of data augmentation consists of
altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on
the set of RGB pixel values throughout the
ImageNet training set. To each training image, we
add multiples of the found principal components,
with the

magnitudes  proportional to

corresponding eigenvalues times a random
variable drawn from a Gaussian with mean zero
and standard deviation 0.1. Therefore to each
RGB image pixel Iy =[Ixy R, Iy ¢, Iy B]T we add the

following quantity:
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found principal components, with magnitudes
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with mean zero and standard deviation 0.1]).
I, TR RGBAER Ly =[lyR, Ly 6, Ly B]T K
TN FME LT -

[P1, P2, Psl[oa A, 2 Aa, 3 As]”

where pi and A ; are ith eigenvector and
eigenvalue of the 3 x 3 covariance matrix of RGB
pixel values, respectively, and a i is the
aforementioned random variable. Each a i is
drawn only once for all the pixels of a particular
training image until that image is used for

training again, at which point it is redrawn. This

[P1, P2, P3][@1 A1, a2 o, asAs]”

Hrb, pi MA a2 1 MRS 1A
3x3RGB W77 ZFEFE AR . 110 a i A& H T ik
BN & . AT — 5k IR B A T A &
7, B ai AU — R, B B 5K B
TINGA 2 BRI & .




scheme approximately captures an important
property of natural images, namely, that object
identity is invariant to changes in the intensity
and color of the illumination. This scheme

reduces the top-1 error rate by over 1%.
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4.2 Dropout

Combining the predictions of many different
models is a very successful way to reduce test
errors [1, 3], but it appears to be too expensive
for big neural networks that already take several
days to train. There is, however, a very efficient
version of model combination that only costs
about a factor of two during training. The
recently-introduced technique, called “dropout”
[10], consists of setting to zero the output of each
hidden neuron with probability 0.5. The neurons
which are “dropped out” in this way do not
contribute to the forward pass and do not
participate in backpropagation. So every time an
input is presented, the neural network samples a
different architecture, but all these architectures
share weights. This technique reduces complex
co-adaptations of neurons, since a neuron cannot
rely on the presence of particular other neurons.
It is, therefore, forced to learn more robust
features that are useful in conjunction with many
different random subsets of the other neurons. At
test time, we use all the neurons but multiply
their outputs by 0.5, which is a reasonable
approximation to taking the geometric mean of
the predictive distributions produced by the

exponentially-many dropout networks.
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We use dropout in the first two fully-connected
layers of Figure 2. Without dropout, our network
exhibits substantial overfitting. Dropout roughly

doubles the number of iterations required to
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converge.

5 Details of learning

We trained our models using stochastic gradient
descent with a batch size of 128 examples,
momentum of 0.9, and weight decay of 0.0005.
We found that this small amount of weight decay
was important for the model to learn. In other
words, weight decay here is not merely a
regularizer: it reduces the model’s training error.

The update rule for weight w was

where i is the iteration index, v is the momentum
variable, ¢ is the learning rate, and

is the average over the ith batch D; of the
derivative of the objective with respect to w,

evaluated at w;.
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is the average over the ith batch D; of the
derivative of the objective with respect to w,

evaluated at wi. )

We initialized the weights in each layer from a
zero-mean Gaussian distribution with standard
deviation 0.01. We initialized the neuron biases in
the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers,
with the constant 1. This initialization accelerates
the early stages of learning by providing the
ReLUs with positive inputs. We initialized the
neuron biases in the remaining layers with the

constant 0.
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We used an equal learning rate for all layers,
which we adjusted manually throughout training.
The heuristic which we followed was to divide
the learning rate by 10 when the validation error
rate stopped improving with the current learning
rate. The learning rate was initialized at 0.01 and

reduced three times prior to termination. We

TEFEA )RR, BATTERT A E#E N T
A2 2R . FATRA MR &5 42
MIGAIE IR ZE ATEFRARET, LA 2w i 27 2] Il R
DL 10, 2223 RYIUAGA 0.01, FREL SR AT
3. (=KL 10)

AT 120 J35k B R EIRATH MR Z 25 T4
90 #, TEPi NVIDIA GTX 580 3GB GPU _Lix k




trained the network for roughly 90 cycles
through the training set of 1.2 million images,
which took five to six days on two NVIDIA GTX
580 3GB GPUs.
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6 Results

Our results on ILSVRC-2010 are summarized in
Table 1. Our network achieves top-1 and top-5
test set error rates of 37.5% and 17.0%. The best
performance achieved during the ILSVRC- 2010
competition was 47.1% and 28.2% with an
approach that averages the predictions produced
from six sparse-coding models trained on
different features [2], and since then the best
published results are 45.7% and 25.7% with an
approach that averages the predictions of two
classifiers trained on Fisher Vectors (FVs)
computed from two types of densely-sampled

features [24].
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We also entered our model in the ILSVRC-2012
competition and report our results in Table 2.
Since the ILSVRC-2012 test set labels are not

publicly available, we cannot report test error

FATHAEIRATHBIA 20 7 ILSVRC-2012 I LL
¥, HERX 2 R TERMKWER. WA
ILSVRC-2012 HASEHIFRZEIFARATE, FrLAIRAT
AN ReAR 1 BATHTA B AR R R e . 7R




rates for all the models that we tried. In the
remainder of this paragraph, we use validation
and test error rates interchangeably because in
our experience they do not differ by more than
0.1% (see Table 2). The CNN described in this
paper achieves a top-5 error rate of 18.2%.
Averaging the predictions of five similar CNNs
gives an error rate of 16.4%. Training one CNN,
with an extra sixth convolutional layer over the
last pooling layer, to classify the entire ImageNet
Fall 2011 release (15M images, 22K categories),
and then “fine-tuning” it on ILSVRC-2012 gives an
error rate of 16.6%. Averaging the predictions of
two CNNs that were pre-trained on the entire Fall
2011 release with the aforementioned five CNNs
gives an error rate of 15.3%. The second-best
contest entry achieved an error rate of 26.2%
with an approach that averages the predictions of
several classifiers trained on FVs computed from

different types of densely-sampled features [7].
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6.1 Qualitative Evaluations

Figure 3 shows the convolutional kernels learned
by the network’s two data-connected layers. The
network has learned a variety of frequency-and
orientation-selective kernels, as well as various
colored blobs. Notice the specialization exhibited
by the two GPUs, a result of the restricted
connectivity described in Section 3.5. The kernels
on GPU 1 are largely color-agnostic, while the
kernels on GPU 2 are largely color-specific. This
kind of specialization occurs during every run
and is independent of any particular random
weight initialization (modulo a renumbering of

the GPUs).
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In the left panel of Figure 4 we qualitatively

assess what the network has learned by
computing its top-5 predictions on eight test
images. Notice that even off-center objects, such
as the mite in the top-left, can be recognized by
the net. Most of the top-5 Ilabels appear
reasonable. For example, only other types of cat
are considered plausible labels for the leopard. In
some cases (grille, cherry) there is genuine
ambiguity about the intended focus of the

photograph.
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Another way to probe the network’s visual
knowledge is to consider the feature activations
induced by an image at the last,
4096-dimensional hidden layer. If two images
produce feature activation vectors with a small
Euclidean separation, we can say that the higher
levels of the neural network consider them to be
similar. Figure 4 shows five images from the test
set and the six images from the training set that
are most similar to each of them according to this
measure. Notice that at the pixel level, the

retrieved training images are generally not close
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in L2 to the query images in the first column. For
example, the retrieved dogs and elephants appear
in a variety of poses. We present the results for
many more test images in the supplementary

material.

Computing similarity by using Euclidean distance

between two 4096-dimensional, real-valued
vectors is inefficient, but it could be made
efficient by training an auto-encoder to compress
these vectors to short binary codes. This should
produce a much better image retrieval method
than applying auto-encoders to the raw pixels
[14], which does not make use of image labels and
hence has a tendency to retrieve images with
similar patterns of edges, whether or not they are

semantically similar.
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7 Discussion

Our results show that a large, deep convolutional
neural network is capable of achieving record-
breaking results on a highly challenging dataset
using purely supervised learning. It is notable
that our network’s performance degrades if a
single convolutional layer is removed. For
example, removing any of the middle layers
results in a loss of about 2% for the top-1
performance of the network. So the depth really

is important for achieving our results.
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To simplify our experiments, we did not use any
unsupervised pre-training even though we expect
that it will help, especially if we obtain enough
computational power to significantly increase the
size of the network without obtaining a
corresponding increase in the amount of labeled
data. Thus far, our results have improved as we
have made our network larger and trained it

longer but we still have many orders of
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magnitude to go in order to match the
infero-temporal pathway of the human visual
system. Ultimately we would like to use very
large and deep convolutional nets on video
sequences where the temporal structure provides
very helpful information that is missing or far less

obvious in static images.
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