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Abstract

The singular value decomposition (SVD) is not only a classical theory
in matrix computation and analysis, but also is a powerful tool in ma-
chine learning and modern data analysis. In this tutorial we first study
the basic notion of SVD and then show the central role of SVD in ma-
trices. Using majorization theory, we consider variational principles of
singular values and eigenvalues. Built on SVD and a theory of sym-
metric gauge functions, we discuss unitarily invariant norms, which are
then used to formulate general results for matrix low rank approxima-
tion. We study the subdifferentials of unitarily invariant norms. These
results would be potentially useful in many machine learning problems
such as matrix completion and matrix data classification. Finally, we
discuss matrix low rank approximation and its recent developments
such as randomized SVD, approximate matrix multiplication, CUR
decomposition, and Nyström approximation. Randomized algorithms
are important approaches to large scale SVD as well as fast matrix
computations.



1
Introduction

The singular value decomposition (SVD) is a classical matrix theory
and a key computational technique, and it has also received wide ap-
plications in science and engineering. Compared with an eigenvalue de-
composition (EVD) which only works on some of square matrices, SVD
applies to all matrices. Moreover, many matrix concepts and proper-
ties such as matrix pseudoinverses, variational principles and unitarily
invariant norms can be induced from SVD. Thus, SVD plays a funda-
mental role in matrix computation and analysis.

Furthermore, due to recent great developments of machine learning,
data mining and theoretical computer science, SVD has been found to
be more and more important. It is not only a powerful tool and theory
but also an art. SVD makes matrices become a “Language" of data
science.

The terminology of singular values has been proposed by Horn in
1950 and 1954 [Horn, 1951, 1954]. The first proof of the SVD for general
m × n matrices might be given by Eckart and Young [1939]. But the
theory of singular values can date back to the 19th century when it
had been studied by the Italian differential geometer E. Beltrami, the
French algebraist C. Jordan, the English mathematician J. J. Sylvester,

2



1.1. Roadmap 3

Table 1.1: Comparison of Matrix Factorization Methods

Matrices Geometry Data Computation
m× n Polar CX QR
m× n SVD CUR QR
SPSD Spectral Nyström (Incomplete) Cholesky

the French mathematician L. Autonne, etc. Please refer to Chapter 3 of
Horn and Johnson [1991] in which the authors presented an excellent
historical retrospection about the SVD or theory of singular values.

There is a rich literature involving singular values or SVD. Chapter
3 of Horn and Johnson [1991] provides exhaustive studies about in-
equalities of singular values as well as unitarily invariant norms, and the
primary focus is on the matrix theory. The books by Watkins [1991],
Demmel [1997], Golub and Van Loan [2012], Trefethen and Bau III
[1997] present a detailed introduction to SVD, the primary focus of
which is on numerical linear algebra.

This tutorial is motivated by recent successful applications of SVD
in machine learning and theoretical computer science [Hastie et al.,
2001, Burges, 2010, Halko et al., 2011, Woodruff, 2014b, Mahoney,
2011, Blum et al., 2015]. The primary focus is on a perspective of ma-
chine learning. The main purpose of the tutorial includes two aspects.
First, it provides a systematic tutorial to the SVD theory and illus-
trates its functions in matrix and data analysis. Second, it provides
an advanced review about recent developments of the SVD theory in
applications of machine learning and theoretical computer science.

1.1 Roadmap

The preliminaries about matrices please refer to the book of Horn and
Johnson [1985]. This tutorial involves matrix differential calculus, ma-
jorization theory, and symmetric gauge functions. For them, the de-
tailed materials can be found in Macnus and Neudecker [2000], Mar-
shal et al. [2010], Schatten [1950], Bhatia [1997]. In Chapter 2 we review
some preliminaries such as Kronecker produces and vectorization op-
erators, majorization theory, and derivatives.



4 Introduction

In Chapter 3 we introduce the basic notion of SVD, including the
existence, construction, and uniqueness. We then rederive some impor-
tant matrix concepts and properties via SVD.We also study generalized
SVD problems, which are concerned with joint decomposition of two
matrices. In Chapter 4 we further illustrate the application of SVD in
definition of the matrix pseudoinverse and solution of the Procrustes
analysis problem. We discuss the role that SVD plays in subspace ma-
chine learning methods.

From the viewpoint of computation and modern data analysis, ma-
trix factorization techniques should be the most important issue of ma-
trices. In Table 1.1 we summary matrix factorization methods, which
are categorized into three types. In particular, the Polar decomposition,
SVD, and spectral decomposition consider geometric representation of
a data matrix, whereas the CX, CUR, and Nyström dcompositions con-
sider a compact representation of the data themselves. That is, the lat-
ters use a portion of the data to represent the whole data. The primary
focus of the QR and Cholesky decomposition is on fast computation.
In Chapter 5 we give reviews about the QR and CUR decompositions.

In Chapter 6 we consider variational principles for singular values
and eigenvalues. Specifically, we apply matrix differential calculus to
rederive the von Neumann theorem [Neumann, 1937] and the Ky Fan
theorem [Fan, 1951]. Accordingly, we give some inequalities for singular
values and eigenvalues.

Built on the inequalities for singular values, Chapter 7 discusses
unitarily invariant norms. Unitarily invariant norms include the nuclear
norm, Frobenius norm and spectral norm as their special cases. There
is a one-to-one correspondence between a unitarily invariant norm of
a matrix and a symmetric gauge function on the singular values of
the matrix. This helps us to establish properties of unitarily invariant
norms.

In Chapter 8 we study subdifferentials of unitarily invariant norms.
We especially present the subdifferentials of the spectral norm and the
nuclear norm as well as the applications in matrix low rank approxima-
tion. We illustrate several examples in optimization, which are solved
via the subdifferentials of the spectral and nuclear norms. The subdif-
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ferentials of unitarily invariant norms would have potentially useful in
machine learning and optimization.

Matrix low rank approximation is a promising theme in machine
learning and theoretical computer science. Chapter 9 gives two impor-
tant theorems about matrix low rank approximation based on errors
of unitarily invariant norms. The first one is an extension of the ordi-
nal least squares estimation problem. The second one was proposed by
Mirsky [1960], which is an extension of the novel Eckart Young the-
orem [Eckart and Young, 1936]. We also discuss approximate matrix
multiplication, which can be regarded as an inverse process of matrix
low rank approximation.

In Chapter 10 we study randomized SVD, CUR approximation,
and Nyström methods to make the applications scalable. The random-
ized SVD and CUR approximation can be also viewed as matrix low
rank approximation techniques. The Nyström approximation is a spe-
cial case of the CUR decomposition and has been widely used to speed
up kernel methods.

1.2 Notation and Definitions

Throughout this tutorial, vectors and matrices are denoted by boldface
lowercase letters and boldface uppercase letters, respectively. Rn+ =
{u = (u1, . . . , un)T ∈ Rn : uj ≥ 0 for j = 1, . . . , n} and Rn++ = {u =
(u1, . . . , un)T ∈ Rn : uj > 0 for j = 1, . . . , n}. Furthermore, if u ∈ Rn+
(or u ∈ Rn++), we also denote u ≥ 0 (or u > 0).

Given a vector x = (x1, . . . , xn)T ∈ Rn, let |x| = (|x1|, . . . , |xn|)T ,
let ‖x‖p = (

∑n
i=1 |xi|p)1/p for p ≥ 1 be the `p-norm of x, and let diag(x)

be an n× n diagonal matrix with the ith diagonal element as xi.
Let [m] = {1, 2, . . . ,m}, Im be the m ×m identity matrix, 1m be

the m × 1 vector of ones, and 0 be the zero vector or matrix with

appropriate size. Let A⊕B =
[
A 0
0 B

]
.

For a matrix A = [a1,a2, . . . ,an] = [aij ] ∈ Rm×n, AT denotes the
transpose of A, rank(A) denotes the rank, range(A) represents the
range which is the space spanned by the columns (i.e., range(A) =
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{y ∈ Rm : y = Ax for some x ∈ Rn} = span{a1,a2, . . . ,an}), null(A)
is the null space (i.e., null(A) = {x : Ax = 0}), and for p = min{m,n}
dg(A) denotes the p-vector with aii as the ith element. Sometimes we
also use Matlab Colon to represent a submatrix of A. For example,
let I ⊂ [m] and J ⊂ [n]. AI,J denotes the submatrix of A with rows
indexed by I and columns indexed by J , AI,: consists of those rows of
A in I, and A:,J consists of those columns of A in J .

Let ‖A‖F =
√∑

ij a
2
ij denote the Frobenius norm, ‖A‖2 denote the

spectral norm, and ‖A‖∗ denote the nuclear norm. When A is square,
we let A−1 be the inverse (if exists) of A, tr(A) =

∑n
i=1 aii be the

trace, and det(A) be the determinant of A.
An m × m real matrix U is symmetric if AT = A, and skew-

symmetric if AT = −A, and normal if AAT = ATA. Clearly, sym-
metric and skew-symmetric matrices are normal. An m×m real matrix
U is said to be orthonormal (or orthogonal) if UTU = UUT = Im.
An m× n real matrix Q for m > n is column orthonormal (or column
orthogonal) if QTQ = In, and a column orthonormal Q is always able
to be extended to an orthonormal matrix. A matrix M ∈ Rm×m is said
to be positive semidefinite (PSD) or positive definite if for any nonzero
vector x ∈ Rm xTMx ≥ 0 or xTMx > 0.



2
Preliminaries

In this chapter we present some preliminaries, including Kronecker
products and vectorization operators, majorization theory, and deriva-
tives. We list some basic results that will be used in this monograph
but omit their detailed derivations.

2.1 Kronecker Products and Vectorization Operators

Given two matricesA ∈ Rm×n and B ∈ Rp×q, the the Kronecker prod-
uct of A and B is defined by

A⊗B ,


a11B · · · a1nB
... . . . ...

am1B · · · amnB

 ,
which is mp× nq. The following properties can be found in Muirhead
[1982].

Proposition 2.1. The Kronecker product has the following properties.

(a) (αA)⊗ (βB) = αβ(A⊗B) for any scalars α, β ∈ R.
(b) (A⊗B)T = AT ⊗BT .

7



8 Preliminaries

(c) (A⊗B)⊗C = A⊗ (B⊗C).

(d) If A and C are both m × n and B is p × q, then (A+C) ⊗ B =
A⊗B+C⊗B and B⊗ (A+C) = B⊗A+B⊗C.

(e) If A is m× n, B is p× q, C is n× r, and D is q × s, then

(A⊗B)(C⊗D) = (AC)⊗ (BD).

(f) If U and V are both orthogonal matrices, so is U⊗V.

(g) If A and B are symmetric positive semidefinite (SPSD), so is A⊗B.

Kronecker products often work with vectorization operators to-
gether. Let vec(A) = (a11, . . . , am1, a12, . . . , amn)T ∈ Rmn be vector-
ization of the matrix A ∈ Rm×n. The following lemma gives the con-
nection between Kronecker products and vectorization operators.

Lemma 2.1.

(1) If B is p×m, X is m× n, and C is n× q, then

vec(BXC) = (CT ⊗B)vec(X).

(2) If A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rp×m, then

tr(ABC) = (vec(AT ))T (Im ⊗B)vec(C).

(3) If A ∈ Rm×p, X ∈ Rn×p, B ∈ Rn×n, and C ∈ Rp×m, then

tr(AXTBXC) = (vec(X))T ((CA)T ⊗B)vec(X)
= (vec(X))T ((CA)⊗BT )vec(X).

2.2 Majorization

Given a vector x = (x1, . . . , xn)T ∈ Rn, let x↓ = (x↓1, . . . , x↓n) be such a
permutation of x that x↓1 ≥ x

↓
2 ≥ · · · ≥ x↓n. Given two vectors x and y ∈

Rn, x ≥ y means xi− yi ≥ 0 for all i ∈ [n]. We say that x is majorized
by y (denoted x ≺ y) if

∑k
i=1 x

↓
i ≤

∑k
i=1 y

↓
i for k = 1, . . . , n − 1

and
∑n
i=1 x

↓
i =

∑n
i=1 y

↓
i . Similarly, x � y if

∑k
i=1 x

↓
i ≥

∑k
i=1 y

↓
i for

k = 1, . . . , n−1 and
∑n
i=1 x

↓
i =

∑n
i=1 y

↓
i .
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We say that x is weakly submajorized by y (denoted x ≺w y) if∑k
i=1 x

↓
i ≤

∑k
i=1 y

↓
i for k = 1, . . . , n, and x is weakly superrmajorized

by y (denoted x ≺w y) if
∑k
i=1 x

↓
i ≥

∑k
i=1 y

↓
i for k = 1, . . . , n,

An n × n matrix W = [wij ] is said to be doubly stochastic if the
wij ≥ 0,

∑n
j=1wij = 1 for all i ∈ [n], and

∑n
i=1wij = 1 for all j ∈ [n].

Note that if Q = [qij ] ∈ Rn×n is orthonormal, then W , [q2
ij ] is a

doubly stochastic matrix. It is thus called orthostochastic.
The following three lemmas are classical results in majorization

theory. They will be used in investigating unitarily invariant norms.

Lemma 2.2. [Hardy et al., 1951] Given two vectors x,y ∈ Rn, then
x ≺ y if and only if there exists a doubly stochastic matrix W such
that x = Wy.

Lemma 2.3 (Birkhoff). Let W ∈ Rn×n. Then it is a doubly stochastic
matrix if and only if it can be expressed as a convex combination of a
set of permutation matrices.

Lemma 2.4. Let u1, . . . , un and v1, . . . , vn be given nonnegative real
numbers such that u1 ≥ · · · ≥ un and v1 ≥ · · · ≥ vn. If

k∏
i=1

ui ≤
k∏
i=1

vi for k ∈ [n],

then
k∑
i=1

ui ≤
k∑
i=1

vi for k ∈ [n].

More generally, assume f is a real-valued function such that f(exp(u))
is increasing and convex. Then

k∑
i=1

f(ui) ≤
k∑
i=1

f(vi) for k ∈ [n].

2.3 Derivatives and Optimality

First let f : X ⊂ Rn → R be a continuous function. The directional
derivative of f at x̄ in a direction u ∈ X is defined as

f ′(x̄; u) = lim
t↓0

f(x̄ + tu)− f(x̄)
t

,
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when this limit exists. When the directional derivative f ′(x̄; u) is lin-
ear in u (that is, f ′(x̄; u) = 〈a,u〉 for some a ∈ X ) then we say f

is (Gâbeaux) differentiable at x̄, with derivative ∇f(x̄) = a. If f is
differentiable at every point in X then we say f is differentiable on X .

When f is not differentiable but convex, we consider a notion of
subdifferentials. We say z is the subgradient of f at x̄ if it satisfies

f(x̄) ≤ f(x) + 〈z, x̄− x〉 for all points z ∈ X .

The set of subgradients is called the subdifferential, and denoted by
∂f(x̄). The subdifferential is always a closed convex set. The following
result shows a connection between subgradients and directional deriva-
tives.

Lemma 2.5 (Max Formula). If the function f : X → (−∞,+∞] is
convex, then any point x̄ in core(domf) and any direction u in X
satisfy

f ′(x̄; u) = max
{
〈z,u〉 : z ∈ ∂f(x̄)

}
.

The further details of these results can be found from Borwein and
Lewis [2006]. The following lemma then shows the fundamental role of
subgradients in optimization.

Lemma 2.6. For any proper convex function f : X → (−∞,+∞], the
point x̄ is a minimizer of f if and only if the condition 0 ∈ ∂f(x̄) holds.

Now let f be a differentiable function from Rm×n to R. For a matrix
X = [xij ] ∈ Rm×n, df(X)

dX =
(
df
dxij

)
(m × n) defines the derivative of f

w.r.t. X. The Hessian matrix of f w.r..t. X is defined as d2f(X)
dvec(X)dvec(X)T ,

which is an mn×mn matrix. Let us see an example.

Example 2.1. We define the function f as

f(X) = tr(XTMX),

where M = [mij ] ∈ Rm×m is a given constant matrix. It is directly
computed that df

dxij
=
∑m
l=1(mil+mli)xlj . This implies that df

dX = (M+
MT )X. In fact, the derivative can be computed as follows. Compute

df = tr(dXTMX + XTMdX) = tr((M + MT )XdXT ).
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We thus have that df
dX = (M + MT )X.

Additionally, it follows from Lemma 2.1 that f(X) = vec(X)T (In⊗
M)vec(X). Thus, we have

df

dvec(X) = vec
( df
dX

)
= [In ⊗ (M + MT )]vec(X),

and hence,
d2f(X)

dvec(X)dvec(X)T = In ⊗ (M + MT ).



3
The Singular Value Decomposition

The singular value decomposition (SVD) is a classical matrix theory
and computational tool. In modern data computation and analysis,
SVD becomes more and more important. In this chapter we aim to
provide a systematical review about the basic principle of SVD.

We will see that there are four approaches to SVD. The first ap-
proach is depart from the spectral decomposition of a symmetric posi-
tive semidefinite (SPSD) matrix. The second approach gives a construc-
tion process via induction. In the third approach the SVD problem is
equivalently formulated into an eigenvalue decomposition problem of a
symmetric matrix (see Theorem 3.5). The fourth approach is based on
the equivalent relationship between the SVD and polar decomposition
(see Theorem 3.6).

We also study uniqueness of SVD (see Theorem 3.2 and Corol-
lary 3.3). These results will be used in derivation of subdifferentials of
unitarily invariant norms (see Chapter 8). Additionally, we present a
generalized SVD (GSVD), which addresses joint decomposition prob-
lems of two matrices. When the two matrices form a column orthonor-
mal matrix, the resulting GSVD process is called the CS decomposition.

12
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3.1 Formulations

Given a nonzero SPSD matrix M ∈ Rn×n, let γi for i = 1, . . . , n be the
eigenvalues of M and xi be the corresponding eigenvectors. That is,

Mxi = γixi, i = 1, . . . , n. (3.1)

It is well known that the xi can be assumed to be mutually orthonormal.
Let Γ = diag(γ1, . . . , γn) and X = [x1, . . . ,xn] such that XTX = In.
We write (3.1) in matrix form as

MX = XΓ.

This gives rise to an eigenvalue decomposition (EVD) of M:

M = XΓXT .

Since the γi are nonnegative, this decomposition is also called a spectral
decomposition of the SPSD matrix M.

Note that the above EVD always exists when M is symmetric
but not PSD. However, the current eigenvalues γi are not necessar-
ily nonnegative. Let Γ̂ = diag(|γ1|, . . . , |γn|) and Y = [y1, . . . ,yn] with
yi = sgn(γi)xi where sgn(0) = 1. Then the decomposition is reformu-
lated as

M = XΓ̂Y,
where XTX = In, YTY = In, and Γ̂ is a nonnegative diagonal matrix.
This new formulation defines a singular value decomposition (SVD) of
the symmetric matrix M.

Naturally, a question emerges: does an SVD exist for an arbitrary
matrix? Let A ∈ Rm×n of rank r where r ≤ min{m,n}. Without loss
of generality, we assume m ≥ n for ease of exposition, because we can
consider AT when m < n.

Consider that AAT is SPSD, so it has the spectral decomposition,
which is defined as

AAT = UΛUT ,

where Λ = diag(λ1, . . . , λm) and UTU = Im. Since rank(AAT ) =
rank(A) = r, AAT has and only has r positive eigenvalues and the
corresponding eigenvectors can form a column orthonormal matrix.
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Assume that Λr = diag(λ1, λ2, . . . , λr) and Ur = [u1,u2, . . . ,ur]
where λ1 ≥ λ2 ≥ · · · ≥ λr are the positive eigenvalues of AAT and
Ur is the m × r matrix of the corresponding eigenvectors such that
UT
r Ur = Ir. Thus, it follows from the spectral decomposition that

UT
r AATUr = Λr

and UT
−rAATU−r = 0 where U−r consists of the last m−r columns of

U. Thus, we have ATU−r = 0. Let Vr = [v1, . . . ,vr] , ATUrΛ−1/2
r .

Then it satisfies VT
r Vr = Ir. Note that

ATU(Λ−1/2
r ⊕ Im−r) = [Vr,ATU−r] = [Vr,0],

which implies that AT = [Vr,0](Λ
1
2
r ⊕ Im−r)UT = VrΛ

1
2
r UT

r . Hence,

A = UrΣrVT
r , (3.2)

where Σr = diag(σ1, σ2, . . . , σr) with σi = λ
1/2
i for i = 1, . . . , r. Clearly,

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
We refer to (3.2) as the condensed SVD of A, where σi’s are called

the singular values, the columns ui of Ur and the columns vi of Vr are
called respectively the left and right singular vectors of A.

Recall that we always assume that σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Let
Σn = diag(σ1, . . . , σr, 0, . . . , 0) be the n × n diagonal matrix, and Un

be an m × n column-orthonormal matrix consisting of Ur in the first
m×r block. In this case, we can equivalently write the condensed SVD
of A as

A = UnΣnVT , (3.3)

which is called a thin (or reduced) SVD of A. Furthermore, we extend
Un to a square orthonormal matrix (denoted U), and Σn to an m× n
matrix Σ by adding m−n rows of zeros below. Then SVD can be also
expressed as

A = UΣVT , (3.4)

which is called a full SVD of A.
As we have seen, these three expressions are mutually equivalent.

We will sometimes use A = UΣVT for the thin SVD for notational
simplicity. In a thin SVD version, let us always keep it in mind that
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Σ is square and U or V is column orthonormal. We now present the
formal formation of SVD of an arbitrary A ∈ Rm×n in which m ≥ n is
not necessarily required.

Theorem 3.1. Given an arbitrary A ∈ Rm×n, its full SVD defined in
(3.4) always exists. Furthermore, the singular values σi are uniquely
determined.

Based on the spectral decomposition of AAT , we have previously
shown the existence proof of the SVD theorem. Here we present a
constructive proof, which has been widely given in the literature.

Proof. If A is zero, the result is trivial. Thus, let A be a nonzero matrix.
Define σ1 , max‖x‖2=1 ‖Ax‖2, which exists because x 7→ ‖Ax‖2 is
continuous and the set {x ∈ Rn : ‖x‖2 = 1} is compact. Moreover,
σ1 > 0. Let v1 ∈ Rn be such a vector that σ1 = ‖Av1‖2. Define
u1 = Av1/σ1, which satisfies ‖u1‖2 = 1.

We extend u1 and v1 to orthonormal matrices U = [u1,U−1] and
V = [v1,V−1], respectively. Then

UTAV =
[
σ1 uT1 AV−1
0 UT

−1AV−1

]
, B,

where we use the fact UT
−1Av1 = σ1UT

−1u1 = 0. Note that

max
‖x‖2=1

‖Bx‖22 = max
‖x‖2=1

‖UTAVx‖22 = max
‖x‖2=1

‖Ax‖22 = σ2
1.

However,
1

σ2
1 + zT z

∥∥∥∥∥B
[
σ1
z

]∥∥∥∥∥
2

2
≥ σ2

1 + zT z,

where z = VT
−1ATu1. This implies that z must be zero.

The proof is completed by induction. In particular, assume (m −
1) × (n − 1) matrix UT

−1AV−1 has a full SVD UT
−1AV−1 = ŨΣ̃ṼT .

Then A has a full SVD:

A = [u1,U−1]
[

1 0
0 Ũ

] [
σ1 0
0 Σ̃

] [
1 0
0 ṼT

] [
vT1

VT
−1

]

= [u1,U−1Ũ]
[
σ1 0
0 Σ̃

] [
vT1

(V−1Ṽ)T

]
,
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because the matrices [u1,U−1Ũ] and [v1,V−1Ṽ] are orthonormal.

As for the uniqueness of the singular values is due to that the σ2
i

are eigenvalues of AAT which are unique. Unfortunately, the left and
right singular matrices Ur and Vr are not unique. However, we have
the following result.

Theorem 3.2. Let A = UrΣrVT
r be a given condensed SVD of A.

Assume there are ρ distinct values among the nonzero singular values
σ1, . . . , σr, with respective multiplicities ri (satisfying

∑ρ
i=1 ri = r).

Then A = ŨrΣrṼT
r is a condensed SVD if and only if

Ũr = Ur(Q1 ⊕Q2 ⊕ . . .⊕Qρ) and Ṽr = Vr(Q1 ⊕Q2 ⊕ . . .⊕Qρ),

where Qi is an arbitrary ri × ri orthonormal matrix.
Furthermore, if all the nonzero singular values are distinct, then

the Qi are either 1 or −1. In other words, the left and right singular
vectors are uniquely determined up to signs.

Proof. Let δ1 > δ2 > . . . > δρ be the ρ distinct values among the
σ1, . . . , σr. This implies that

Σr = δ1Ir1 ⊕ δ2Ir2 ⊕ . . .⊕ δρIrρ . (3.5)

The sufficiency follows from the fact that

(Q1 ⊕ . . .⊕Qρ)(δ1Ir1 ⊕ . . .⊕ δρIrρ)(QT
1 ⊕ . . .⊕QT

ρ ) = Σr.

We now prove the necessary condition. Consider that range(Ur) =
range(A) = range(Ũr) and range(Vr) = range(AT ) = range(Ṽr).
Thus, we have

Ũr = UrS and Ṽr = VrT,

where S and T are some r × r orthonormal matrices. Hence, Σr =
SΣrTT , or equivalently, ΣrT = SΣr. As in (3.5) for Σ, partition S
and T into

S =


S11 . . . S1ρ
... . . . ...

Sρ1 . . . Sρρ

 and T =


T11 . . . T1ρ
... . . . ...

Tρ1 . . . Tρρ

 ,
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where Sij and Tij are ri× rj . It follows from ΣrT = SΣr that δiTii =
δiSii for i = 1, . . . , ρ and δiTij = δjSij . As a result, we obtain that
Sii = Tii for i = 1, . . . , ρ. Since S and T are orthonormal, we have

ρ∑
j=1

SijSTij = Iri =
ρ∑
j=1

TijTT
ij .

Note that
∑ρ
j=1 TρjTT

ρj =
∑ρ
j=1

δ2
j

δ2
ρ
SρjSTρj , which implies that

∑
j<ρ

[
1−

δ2
j

δ2
ρ

]
SρjSTρj = 0. (3.6)

Since 1 − δ2
j

δ2
ρ
< 0 for j < ρ and SρjSTρj is always PSD, we must have

Sρj = 0 for all j < ρ, for otherwise, if there were a k < ρ such that
Sρk 6= 0, there would exist a nonzero x ∈ Rrρ such that xTSρkSTρkx > 0.
It would lead to ∑

j<ρ

[
1−

δ2
j

δ2
ρ

]
xTSρjSTρjx < 0,

which conflicts with (3.6). Accordingly, Sρj = Tρj = 0 for all j < ρ, and
hence, SρρSTρρ = TρρTT

ρρ = Irρ . It also follows from the orthogonality
of S and of T that for any i < ρ,

0 =
ρ∑
j=1

SijSTρj = SiρSTρρ and 0 =
ρ∑
j=1

TijTT
ρj = TiρTT

ρρ,

which leads to Siρ = Tiρ = 0 for i < ρ.
Similarly, consider the ρ−1, ρ−2, . . . , 2 cases. We have Sij = Tij =

0 for i 6= j, Sii = Tii and SiiSTii = TiiTT
ii = Iri for i ∈ [ρ]. As a result,

setting Qi = Sii completes the proof.

We now extend the result in Theorem 3.2 to the full SVD and thin
SVD of A. The following corollary is immediately obtained.

Corollary 3.3. Let A = UΣVT be a given full SVD of A ∈ Rm×n.
Then A = ŨΣṼT is a full SVD if and only if Ũ = UQ and Ṽ = VP
where Q = Q1 ⊕ · · · ⊕ Qρ ⊕ Q0 and P = Q1 ⊕ · · · ⊕ Qρ ⊕ P0. Here
Q1, . . . ,Qρ are defined as in Theorem 3.2, and Q0 ∈ R(m−r)×(m−r) and
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P0 ∈ R(n−r)×(n−r) are any orthonormal matrices. Obviously, QΣPT =
Σ and QTΣP = Σ hold.

Assume m ≥ n and A = UΣVT is a given thin SVD of A ∈ Rm×n.
Then A = ŨΣṼT is a thin SVD if and only if Ũ = UQ and Ṽ = VP
where Q = Q1⊕· · ·⊕Qρ⊕Q0 and P = Q1⊕· · ·⊕Qρ⊕P0. Currently,
Q0 ∈ R(n−r)×(n−r) is any orthonormal matrix. Obviously, QΣ = ΣQ,
ΣPT = PTΣ, and QΣPT = Σ hold.

Theorem 3.2 and Corollary 3.3 will be used in derivation of sub-
differentials of unitarily invariant norms (see Chapter 8). When the
matrix in question is SPSD, the spectral decomposition and SVD are
identical. That is, U = V in this case. Moreover, the eigenvalues and
singular values are identical.

The construction proof of Theorem 3.1 shows that

σ1(A) = max{‖Av‖2 : v ∈ Rn, ‖v‖2 = 1}, so there exists a unit
vector v1 ∈ Rn such that σ1(A) = ‖Av1‖2;

σ2(A) = max{‖Av‖2 : v ∈ Rn, ‖v‖2 = 1,vTv1 = 0}, so there
exists a unit vector v2 ∈ Rn such that vT2 v1 = 0 and σ2(A) =
‖Av2‖2;

...

σk(A) = max{‖Av‖2 : v ∈ Rn, ‖v‖2 = 1,vT [v1, . . . ,vk−1] = 0},
so there exists a unit vector vk ∈ Rn such that vTk [v1, . . . ,vk−1] =
0 and σk(A) = ‖Avk‖2;

...

The following theorem is the generalization of the Courant-Fischer
theorem for singular values.

Theorem 3.4. Given a matrix A ∈ Rm×n, let σ1 ≥ σ2 ≥ · · · ≥ σp be
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the singular values of A where p = min{m,n}. For any k ∈ [p], then

σk = min
v1,...,vk−1∈Rn

max
v ∈ Rn, ‖v‖2 = 1

vT [v1, . . . ,vk−1] = 0

‖Av‖2

= max
v1,...,vn−k∈Rn

min
v ∈ Rn, ‖v‖2 = 1

vT [v1, . . . ,vn−k] = 0

‖Av‖2.

3.2 Matrix Properties via SVD

In what follows, we list some matrix properties which can be induced
from SVD. These properties show that SVD is fundamental not only
in matrix computation but also in matrix analysis.

Proposition 3.1. Let A = UΣVT be a full SVD of m × n matrix A,
and A = UrΣrVT

r be a condensed SVD. Let p = min{m,n}. Then

(1) The rank of A is equal to the number of the nonzero singular values σi
of A.

(2) ‖A‖2 = σ1 is the spectral norm and ‖A‖F =
√∑

i,j a
2
ij =

√∑p
i=1 σ

2
i is

the Frobenius norm.
(3) range(A) = range(AAT ) = range(Ur) = span(u1, . . . ,ur) and

null(A) = range(V−r) = span(vr+1, . . . ,vn).
(4) range(AT ) = range(ATA) = range(Vr) = span(v1, . . . ,vr) and

null(AT ) = range(U−r) = span(ur+1, . . . ,um).
(5) The eigenvalues of ATA are σ2

i for i = 1, . . . , r and n−r zeros. The right
singular vectors vi are the corresponding orthonormal eigenvectors.

(6) The eigenvalues of AAT are σ2
i for i = 1, . . . , r and m − r zeros. The

left singular vectors ui are the corresponding orthonormal eigenvectors.
(7) Let B = UBΣBVB be the condensed SVD of B. Then A ⊕ B =

(U ⊕ UB)(Σ ⊕ ΣB)(VT ⊕ VT
B) is the condensed SVD of A⊕B, and

A⊗B = (U⊗UB)(Σ⊗ΣB)(VT ⊗VT
B) is the condensed SVD of A⊗B.

(8) If A is square and invertible, then A−1 = VΣ−1UT and |det(A)| =∏n
i=1 σi(A).
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Theorem 3.5. Given a matrix A ∈ Rm×n, let H =
[

0 AT

A 0

]
. If

A = UrΣrVT
r be the condensed SVD, then H has 2r nonzero eigenval-

ues, which are ±σi, with the corresponding orthonormal eigenvectors
1√
2

[
vi
±ui

]
, i = 1, . . . , r.

Conversely, if γi is the eigenvalue of H, with the corresponding

eigenvector zi =
[
z(1)
i

z(2)
i

]
where z(1)

i ∈ Rn and z(2)
i ∈ Rm, then −γi is

the eigenvalue of H, with the corresponding eigenvector zi =
[

z(1)
i

−z(2)
i

]
.

Furthermore, let the σi denote the r positive values among the ±γi,

and 1√
2

[
vi
ui

]
denote the corresponding orthonormal eigenvectors. Then

A = UrΣrVT
r , where Ur = [u1, . . . ,ur], Vr = [v1, . . . ,vr], and Σr =

diag(σ1, . . . , σr), is a condensed SVD of A.

Proof. The first part is directly obtained from the fact that

H =
[

0 AT

A 0

]
=
[

0 VrΣrUT
r

UrΣrVT
r 0

]

= 1
2

[
Vr Vr

Ur −Ur

] [
Σr 0
0 −Σr

] [
VT
r UT

r

VT
r −UT

r

]
.

Conversely, consider that[
0 AT

A 0

] [
z(1)
i

−z(2)
i

]
=
[
−AT z(2)

i

Az(1)
i

]
=
[
−γiz(1)

i

γiz(2)
i

]
= −γi

[
z(1)
i

−z(2)
i

]
,

which shows that −γi is the eigenvalue of H, with the corresponding

eigenvector
[

z(1)
i

−z(2)
i

]
. Now using the notation of Σr, Ur, and Vr, we

have the EVD of H:

H =
[

0 AT

A 0

]
= 1

2

[
Vr Vr

Ur −Ur

] [
Σr 0
0 −Σr

] [
VT
r UT

r

VT
r −UT

r

]
.

It also follows from the orthogonality of the eigenvectors that UT
r Ur +

VT
r Vr = 2Ir and UT

r Ur − VT
r Vr = 0. This implies that UT

r Ur =
VT
r Vr = Ir. Thus, A = UrΣrVT

r is a condensed SVD of A.
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Theorem 3.5 establishes an interesting connection of the SVD of a
general matrix with the EVD of a symmetric matrix. This provides an
approach to handling an SVD problem of an arbitrary matrix. That is,
one transforms the SVD problem into an EVD problem of an associated
symmetric matrix. The theorem also gives an alternative proof for the
SVD theory.

The following theorem shows that the Polar Decomposition of a
matrix can be induced from its SVD. Note that SVD can be also derived
from the Polar decomposition. Here we do not give the detail of this
derivation.

Theorem 3.6 (Polar Decomposition). Let A ∈ Rm×n be a given matrix
where m ≥ n. Then its polar decomposition exists; that is, there are a
column orthonormal matrix Q and a unique SPSD matrix S such that
A = QS. Furthermore, if A is full column rank, then Q is unique.

Proof. Let A = UΣVT be a thin SVD of A. Then

A = UVTVΣVT , QS,

where Q , UVT is column orthonormal and S , VΣVT is SPSD.
Assume that A has two Polar decompositions: A = Q1S1 and

Q2S2. Make the full SVDs (spectral decomposition) of S1 and S2
as S1 = V1Σ1VT

1 and S2 = V2Σ2VT
2 , respectively. Then A =

(Q1V1)Σ1VT
1 and A = (Q2V2)Σ2VT

2 be two thin SVDs of A. This
implies that Σ1 = Σ2 , Σ. Moreover, it follows from Corollary 3.3
that V2 = V1P1 and Q2V2 = Q1V1P2 where P1 and P2 are or-
thonormal matrices such that ΣPT

1 = PT
1 Σ. Thus, S2 = V2ΣVT

2 =
V1P1ΣPT

1 VT
1 = V1ΣVT

1 = S1.
If A is full column rank, then S is invertible. Hence, Q1 = Q2.

As we see from the proof, S = VΣVT = (ATA)1/2; that is, S is
identical to the square root of the matrix ATA.

3.3 Matrix Concepts via SVD

All matrices have SVD, so SVD plays a central role in matrix analy-
sis and computation. As we have seen in the previous section, many
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matrix concepts and properties can be induced from SVD. Here we
present other several matrix notions, which are used in modern matrix
computations.

Definition 3.1. Assume A ∈ Rm×n and B ∈ Rm×n are of rank k and
rank l, respectively, and l ≥ k. Let A = UA,kΣA,kVT

A,k and B =
UB,lΣB,lVT

B,l be the condensed SVDs of A and B. The cosines of the
canonical angles between A and B are defined as

cos θi(A,B) = σi(UT
A,kUB,l), i = 1, . . . , k.

Consider that

σ2(UT
A,kUB,l) = λ(UT

A,kUB,lUT
B,lUA,k)

and UT
A,kUB,lUT

B,lUA,k + UT
A,kUB,−lUT

B,−lUA,k = Ik, where UB,−l ∈
Rm×n−l is an orthonormal complement of UB,l. Thus, we have that

λ(UT
A,kUB,lUT

B,lUA,k) = 1− λ(UT
A,kUB,−lUT

B,−lUA,k).

In other words, σ2(UT
A,kUB,l) = 1− σ2(UT

A,kUB,−l). Hence,

sin θi(A,B) = σk+1−i(UT
A,kUB,−l), i = 1, . . . , k.

Note that σ1(UT
A,kUB,−l) = ‖UT

A,kUB,−l‖2, which is also cased the
distance between two subspaces spanned by UA,k and UB,l.

Definition 3.2. Given a nonzero matrix A ∈ Rm×n, let σ1 ≥ · · · ≥ σp

where p = min{m,n}. The stable rank of A is defined as
∑p
i=1

σ2
i

σ2
1
, and

the nuclear rank is defined as
∑p
i=1

σi
σ1
.

Clearly,
∑p
i=1

σ2
i

σ2
1
≤
∑p
i=1

σi
σ1
≤ rank(A). The concepts have been

recently proposed for describing error bounds of matrix multiplication
approximation [Magen and Zouzias, 2011, Cohen et al., 2015, Kyrillidis
et al., 2014].

Definition 3.3 (Statistical Leverage Score). Given an m × n matrix A
with m > n, let A have a thin SVD A = UΣVT , and let u(i) be the
ith row of U. Then the statistical leverage scores of the rows of A are
defined as

li = ‖u(i)‖22 for i = 1, . . . ,m.
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The coherence of the rows of A is defined as

γ , max
i

li.

The (i, j)-cross leverage scores are defined as

cij = (u(i))Tu(j).

The statistical leverage [Hoaglin and Welsch, 1978] measures the
extent to which the singular vectors of a matrix are correlated with
the standard basis. Recently, it has found usefulness in large-scale data
analysis and in the analysis of randomized matrix algorithms [Drineas
et al., 2008, Mahoney and Drineas, 2009, Ma et al., 2014]. A related
notion is that of matrix coherence, which has been of interest in matrix
completion and Nyström-based low rank matrix approximation [Can-
dès and Recht, 2009, Talwalkar and Rostamizadeh, 2010, Wang and
Zhang, 2013, Nelson and Nguyên, 2013].

3.4 Generalized Singular Value Decomposition

This section studies simultaneous SVD of two given matrices A and B.
This leads us to a generalized SVD (GSVD) problem.

Theorem 3.7 (GSVD). Suppose two matrices A ∈ Rm×p and B ∈
Rn×p with n ≥ p are given. Let q = min{m, p}. Then there exist two
orthonormal matrices UA ∈ Rm×m and UB ∈ Rn×n, and an invertible
matrix X ∈ Rp×p such that

UT
AAX = diag(α1, . . . , αq) and UT

BBX = diag(β1, . . . , βp),

where α1 ≥ · · ·αq ≥ 0, and 0 ≤ β1 ≤ · · ·βp.

The GSVD theorem was originally proposed by Loan [1976], in
which n ≥ p (orm ≥ p) is required. Later on, Paige and Saunders [1981]
developed a more general formulation for GSVD in which matrix pencil
A and B are required only to have the same number of columns. Paige
and Saunders [1981] also studied a GSVD of submatrices of a column
orthonormal matrix. That is a so-called CS decomposition [Golub et al.,
1999] given as follows.
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Theorem 3.8 (The CS Decomposition). Let Q ∈ R(m+n)×p be a column
orthonormal matrix. Partition it as QT = [QT

1 ,QT
2 ] where Q1 and Q2

arem×p and n×p. Then there exist orthonormal matrices U1 ∈ Rm×m,
U2 ∈ Rn×n, and V1 ∈p×p such that

UT
1 Q1V1 = C and UT

2 Q2V1 = S,

where

C =


r s p−r−s

r Ir 0 0
s 0 C1 0
m−r−s 0 0 0

,

S =


r s p−r−s

n+r−p 0 0 0
s 0 S1 0
p−r−s 0 0 Ip−r−s

,
C1 = diag(α1, . . . , αs) and S1 = diag(

√
1− α2

1, . . . ,
√

1− α2
s), and 1 >

α1 ≥ α2 ≥ · · ·αs > 0.

Proof. Since QT
1 Q1 + QT

2 Q2 = QTQ = Ip, the largest eigenvalue of
QT

1 Q1 (reps. QT
2 Q2) is at most 1. This implies ‖Q1‖2 = σ1(Q1) ≤ 1

(resp. ‖Q2‖2 ≤ 1). Let q = min{m, p}. Make a full SVD of Q1 as

Q1 = U1CVT
1 ,

where C = diag(c1, . . . , cq) is an m×p diagonal matrix. Assume

1 = c1 = · · · = cr > cr+1 ≥ · · · ≥ cr+s > cr+s+1 = · · · cp = 0.

Let D = diag(cr+1, . . . , cr+s)⊕ 0, which is (m− r)× (p− r), and

Q2V1 = [W1︸︷︷︸
r

,W2︸︷︷︸
p−r

].

Then [
U1 0
0 In

]T [Q1
Q2

]
V1 =

 Ir 0
0 D

W1 W2
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is column orthonormal. This implies that W1 = 0 and

WT
2 W2 = Ip−r −DTD = diag(1− c2

r+1, . . . , 1− c2
p)

is nonsingular. Define si =
√

1− c2
i for i ∈ [p]. Then

Z , W2diag(1/sr+1, . . . , 1/sp)

is column orthonormal. We now extend Z to an n × n orthonormal
matrix U2, the last p− r columns of which constitute Z. When setting
α1 = cr+1, · · · , αs = cr+s, we have

UT
2 Q1V1 = S.

Thus, the theorem follows.

Remarks It is worth pointing out that Q1 = U2SVT
1 is not certainly

a full SVD of Q1, because some of the nonzero elements of S might not
lie on the principal diagonal. However, if n ≥ p, then we can move the
first n− p rows of S to be the last n− p rows by pre-multiplying some
permutation matrix P. That is,

PTUT
2 Q1V1 =


r s p−r−s

r 0 0 0
s 0 S1 0
p−r−s 0 0 Ip−r−s
n−p 0 0 0

.
This is the reason why the restriction n ≥ p is required in Theorem 3.7
(A and B correspond to Q1 and Q2, respectively).

The following theorem gives a more general version of Theorem 3.7
as well as Theorem 3.8. Compared with Theorem 3.7, m ≥ p or n ≥ p

are no longer restricted. Compared with Theorem 3.8, the submatrices
in question do not necessarily form a column orthonormal matrix.

Theorem 3.9. Suppose two matrices A ∈ Rm×p and B ∈ Rn×p are
given. Let KT , [AT ,BT ] with the rank t. Then exist orthonormal
matrices UA ∈ Rm×m, UB ∈ Rn×n, W ∈ Rt×t, and V ∈ Rp×p such
that

UT
AAV = ΣA[WTR︸ ︷︷ ︸

t

, 0︸︷︷︸
p−t

] and UT
BBV = ΣB[WTR︸ ︷︷ ︸

t

, 0︸︷︷︸
p−t

],
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where R ∈ Rt×t is a positive diagonal matrix with its diagonal elements
equal to the nonzero of singular values of K,

ΣA =


r s t−r−s

r Ir 0 0
s 0 DA 0
m−r−s 0 0 0

, (3.7)

ΣB =


r s t−r−s

n+r−t 0 0 0
s 0 DB 0
t−r−s 0 0 It−r−s

. (3.8)

Here r and s depend on the context,

DA = diag(αr+1, . . . , αr+s) and DB = diag(
√

1−α2
r+1, . . . ,

√
1−α2

r+s),

and 1 > αr+1 ≥ · · · ≥ αr+s > 0.

Theorem 3.9 implies that

UT
AAX = [ΣA,0] and UT

BBX = [ΣB,0],

where X , V(R−1W ⊕ Ip−t). With the above remarks, Theorem 3.7
follows. Thus, we now present the proof of Theorem 3.9.

Proof. Since rank(K) = t, making a full SVD of K yields

PTKV =
[
R 0
0 0

]
,

where P ∈ R(m+n)×(m+n) and V ∈ Rp×p are orthonormal matrices, R
is a t × t diagonal matrix with the diagonal elements as the nonzero
singular values of K. Partition P as

P = [ P1︸︷︷︸
t

, P2︸︷︷︸
m+n−t

] =
[
P11 P12
P21 P22

]
where P11 ∈ Rm×t and P21 ∈ Rn×t.

Obviously, PT
1 P1 = PT

11P11 + PT
21P21 = It. Moreover, we have

KV = [P1R,0].
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Applying Theorem 3.8 to P1 yields that there exist orthonormal ma-
trices UA ∈ Rm×m, UB ∈ Rn×n, and W ∈ Rt×t such that[

UT
A 0

0 UT
B

] [
P11
P21

]
W =

[
ΣA

ΣB

]

where ΣA and ΣB are defined in (3.7) and (3.8). Hence,[
UT
A 0

0 UT
B

] [
A
B

]
V =

[
ΣAWTR 0
ΣBWTR 0

]
.

That is, UT
AAV = ΣA[WTR,0] and UT

BBV = ΣB[WTR,0].

In terms of Theorem 3.7, if βi 6= 0, then the column xi of X satisfies

ATAxi = λiBTBxi,

where λi = α2
i

β2
i
. This implies GSVD can be used to solve general-

ized eigenvalue problems. Based on this observation, Howland et al.
[2003], Park and Park [2005] applied GSVD for solving Fisher lin-
ear discriminant analysis (FLDA) and generalized Fisher discriminant
analysis [Baudat and Anouar, 2000, Mika et al., 2000].

Recall that the above GSVD procedure requires to implement-
ing an SVD on the (m+n) × p matrix K. The computational cost
is O((m+n)p ∗ min{m+n, p}). Thus, when both m+n and p are very
large, the GSVD is less efficient. We now consider a special case in
which B = ZA where Z ∈ Rn×m is some given matrix. We will see
that it is no longer necessary to perform the SVD on K.

Theorem 3.10. Let A ∈ Rm×p and B ∈ Rn×p be two given matrices.
Assume that B = ZA where Z ∈ Rn×m is some matrix, rank(B) = s,
and rank(A) = t. Let A = UtΣtVT

t be a condensed SVD of A, and
Y = UY ΣY VT

Y be a full SVD of Y , ZUt. Then

(UtVY )TAVtΣ−1
t VY = It and UT

Y BVtΣ−1
t VY = ΣY .

The proof is direct. Assume Ut and Vt are extended to orthonormal
matrices U (m×m) and V (p× p). Let

X = V(Σ−1
t VY ⊕ Ip−t).
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We now have that

AX = UUTAV(Σ−1
t VY ⊕ Ip−t) = [UtVY ,0] = U(VY ⊕ Im−t)(It⊕0)

and

BX = ZUUTAV(Σ−1
t VY ⊕ Ip−t) = ZUt[VY ,0]

= UY ΣY VT
Y [VY ,0] = UY [ΣY ,0].

Thus,
(VT

Y ⊕ Im−t)UTAX = [It ⊕ 0]

and
UT
Y BX = [ΣY ,0].

In this special case, we only need to implement two SVDs on two
matrices with smaller sizes. The diagonal elements of ΣY and the
columns of VtΣ−1

t VY are the generalized eigenvalues and eigenvectors
of the corresponding generalized eigenvalue problem.

Remarks Assume that A ∈ Rm×n and B ∈ Rm×n have the same
size. Gibson [1974] proved that they have joint factorizations A =
UΣAVT and B = UΣBVT if and only if ABT and BTA are both
normal. Here U and V are orthonormal matrices, and both ΣA and ΣB

are diagonal but their diagonal elements are perhaps complex. These
diagonal elements are nonnegative only if both ABT and BTA are
SPSD.



4
Applications of SVD: Case Studies

In the previous chapter we present the basic notion and some important
properties of SVD. Meanwhile, we show that many matrix properties
can be rederived via SVD. In this chapter, we further illustrate appli-
cations of SVD in matrices, including in the definition of the Moore-
Penrose pseudoinverse of an arbitrary matrix and in the analysis of the
Procrustes problem.

For any matrix, the Moore-Penrose pseudoinverse exists and is
unique. Moreover, it has been found to have many applications. Thus,
it is an important matrix notion. In this chapter we exploit the matrix
pseudoinverse to solve least squares estimation, giving rise to a more
general result. We also show that the matrix pseudoinverse can be used
to deal with a class of generalized eigenvalue problems.

In fact, SVD has also wide applications in machine learning and
data analysis. For example, SVD is an important tool in spectral anal-
ysis [Azar et al., 2001], latent semantic indexing [Papadimitriou et al.,
1998], spectral clustering, and projective clustering [Feldman et al.,
2013]. We specifically show that SVD plays a fundamental role in sub-
space methods such as PCA, MDS, FDA and CCA.
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4.1 The Matrix MP Pseudoinverse

Given a matrix A ∈ Rm×n and a vector b ∈ Rm, we are concerned
with the least squares estimation problem:

x̂ = argmin
x∈Rn

‖Ax− b‖22. (4.1)

The minimizer should satisfy the Karush-Kuhn-Tucker (KKT) condi-
tion: that is, it is the solution of the following normal equation:

ATAx = ATb. (4.2)

Let A = UrΣrVT
r be the condensed SVD of A. Then VrΣ2

rVT
r x =

VrΣrUT
r b. Define A† = VrΣ−1

r UT
r ∈ Rn×m. Obviously,

x̂ = A†b

is a minimizer. It is clear that if A is invertible, then the minimizer
is x̂ = A−1b. Thus, A† is a generalization of A−1 in the case that
A is an arbitrary matrix, i.e., it is not necessarily invertible and even
non-square. This leads us to the notion of the matrix Moore-Penrose
(MP) pseudoinverse [Ben-Israel and Greville, 2003].

Definition 4.1. Given a matrix A ∈ Rm×n, a real n × m matrix B
is called the MP pseudoinverse of A if it satisfies the following four
conditions: (1) ABA = A, (2) BAB = B, (3) (AB)T = AB, and (4)
(BA)T = BA.

It is easily verified that A† = VrΣ−1
r UT

r is a pseudoinverse of A.
Moreover, when A is invertible, A† is identical to A−1. The following
theorem then shows that A† is the unique pseudoinverse of A.

Theorem 4.1. Let A = UrΣrVT
r be the condensed SVD of A ∈ Rm×n.

Then B is the pseudoinverse of A if and only if B = A† , VrΣ−1
r UT

r .

Proof. To complete the proof, it suffices to prove the uniqueness of
the pseudoinverse. Assume that B and C are two pseudoinverses of A.
Then

AB = (AB)T = BTAT = BT (ACA)T = BTATCTAT

= (AB)T (AC)T = (ABA)C = AC.
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Similarly, it also holds that BA = CA. Thus,

B = BAB = BAC = CAC = C.

The matrix pseudoinverse also has wide applications. Let us see its
application in solving generalized eigenproblems. Given two matrices
M and N ∈ Rm×m, we refer to (Λ,X) where Λ = diag(λ1, . . . , λq)
and X = [x1, . . . ,xq] as q eigenpairs of the matrix pencil (M,N) if
MX = NXΛ; namely,

Mxi = λiNxi, for i = 1, . . . , q.

The problem of finding eigenpairs of (M,N) is known as a general-
ized eigenproblem. Clearly, when N = Im, the problem becomes the
conventional eigenvalue problem.

Usually, we are interested in the problem with the nonzero λi for
i = 1, . . . , q and refer to (Λ,X) as the nonzero eigenpairs of (M,N). If
N is nonsingular, (Λ,X) is also referred to as the (nonzero) eigenpairs
of N−1M because the generalized eigenproblem is equivalent to the
eigenproblem:

N−1MX = XΛ.

However, when N is singular, Zhang et al. [2010] suggested to use a
pseudoinverse eigenproblem:

N†MX = XΛ.

Moreover, Zhang et al. [2010] established a connection between the
solutions of the generalized eigenproblem and its corresponding pseu-
doinverse eigenproblem. That is,

Theorem 4.2. Let M and N be two matrices in Rm×m. Assume
range(M) ⊆ range(N). Then, if (Λ,X) are the nonzero eigenpairs of
N†M, we have that (Λ,X) are the nonzero eigenpairs of the matrix
pencil (M,N). Conversely, if (Λ,X) are the nonzero eigenpairs of the
matrix pencil (M,N), then (Λ,N†NX) are the nonzero eigenpairs of
N†M.
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Proof. Let M = U1Γ1VT
1 and N = U2Γ2VT

2 be the condensed SVD
of M and N. Thus, we have range(M) = range(U1) and range(N) =
range(U2). Moreover, we have N† = V2Γ−1

2 UT
2 and NN† = U2UT

2 .
It follows from range(M) ⊆ range(N) that range(U1) ⊆ range(U2).
This implies that U1 can be expressed as U1 = U2Q where Q is some
matrix of appropriate order. As a result, we have

NN†M = U2UT
2 U2QΓ1VT

1 = M.

It is worth noting that the condition NN†M = M is not only necessary
but also sufficient for range(M) ⊆ range(N).

If (Λ,X) are the eigenpairs of N†M, then it is easily seen that
(Λ,X) are also the eigenpairs of (M,N) due to NN†M = M.

Conversely, suppose (Λ,X) are the eigenpairs of (M,N). Then we
have NN†MX = NXΛ. This implies that (Λ,N†NX) are the eigen-
pairs of N†M due to NN†M = M and N†NN† = N†.

Fisher discriminant analysis (FDA) is a classical method for classi-
fication and dimension reduction simultaneously [Mardia et al., 1979].
It is essentially a generalized eigenvalue problem in which the matrices
N and M correspond to a pooled scatter matrix and a between-class
scatter matrix [Ye and Xiong, 2006, Zhang et al., 2010]. Moreover, the
condition range(M) ⊆ range(N) meets. Thus, Theorem 4.2 provides a
solution when the pooled scatter matrix is singular or nearly singular.
We will present more details about FDA in Section 4.3.

4.2 The Procrustes Problem

Assume that X ∈ Rn×p and Y ∈ Rn×p are two configurations of n data
points. The orthogonal Procrustes analysis aims to move Y relative
into X through rotation [Gower and Dijksterhuis, 2004].

In particular, the Procrustes problem is defined as

min
Q∈Rp×p

‖X−YQ‖2F s.t. QTQ = Ip. (4.3)

Theorem 4.3. Let the full SVD of YTX be YTX = UΣVT . Then
UVT is the minimizer of the Procrustes problem in (4.3).



4.3. Subspace Methods: PCA, MDS, FDA, and CCA 33

Proof. Since ‖X −YQ‖2F = tr((X −YQ)T (X −YQ)) = tr(XTX) +
tr(YTY)− 2tr(YTXQT ), the original problem is equivalent to

max tr(YTXQT ) s.t. QTQ = Ip.

Recall that the constants QTQ = Ip are equivalent to that qTi qi = 1
for i = 1, . . . , p, and qTi qj = 0 for i 6= j. Here the qi are the columns
of Q. Thus, the Lagrangian function is

tr(YTXQT )− 1
2

p∑
i=1

cii(qTi qi − 1)− 1
2
∑
i>j

cij(qTi qj − 0),

which is written in matrix form as

L(Q,C) = tr(YTXQT )− 1
2tr[C(QTQ− Ip)],

where C = [cij ] is a symmetric matrix of the Lagrangian multipliers.
Since

dL = tr(YTXdQT )− 1
2tr(C(dQTQ + QTdQ)),

we have dL
dQ = YTX − QC. Letting the first-order derivative be zero

yields
YTX−QC = 0.

Let Q̂ = UVT and Ĉ = VΣVT , which are obviously the solutions of
the above equation systems.

The Hessian matrix of L w.r.t. Q at Q = Q̂ and C = Ĉ is
−(VΣVT ) ⊗ Ip, which is negative definite. Thus, Q = UVT is the
minimizer of the Procrustes problem.

4.3 Subspace Methods: PCA, MDS, FDA, and CCA

Subspace methods, such as principal component analysis (PCA), mul-
tidimensional scaling (MDS), Fisher discriminant analysis (FDA), and
canonical correlation analysis (CCA), are a class of important machine
learning methods. SVD plays a fundamental role in subspace learning
methods.

PCA [Jolliffe, 2002, Kittler and Young, 1973] and MDS [Cox and
Cox, 2000] are two classical dimension reduction methods. Let A =
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[a1, . . . ,an]T be a given data matrix in which each vector ai represents
a data instance in Rp. Let m = 1

n

∑n
i=1 ai = 1

nAT1n be the sample
mean and Cn = In− 1

n1nITn be a so-called centered matrix. The pooled
scatter matrix is defined as (a multiplier 1/n omitted)

S =
n∑
i=1

(ai −m)(ai −m)T = ATCnCnA = ATCnA.

It is well known that PCA computes the spectral decomposition
of S, while the classical MDS or principal coordinate analysis (PCO)
computes the spectral decomposition of the Gram matrix CnAATCn.
Proposition 3.1-(5)-(6) show that it is equivalent to computing SVD
directly on the centerized data matrix CnA. Thus, SVD bridges PCA
and PCO. That is, there is a duality relationship between PCA and
PCO [Mardia et al., 1979]. This relationship has found usefulness in
latent semantic analysis, face classification, and microarray data anal-
ysis [Deerwester et al., 1990, Turk and Pentland, 1991, Golub et al.,
1999, Belhumeur et al., 1997, Muller et al., 2004].

FDA is a joint approach for dimension reduction and classification.
Assume that the ai are to be grouped into c disjoint classes and that
each ai belongs to one and only one class. Let V = {1, 2, . . . , n} denote
the index set of the data points ai and partition V into c disjoint
subsets Vj ; that is, Vi ∩ Vj = ∅ for i 6= j and ∪cj=1Vj = V , where the
cardinality of Vj is nj so that

∑c
j=1 nj = n. We also make use of a

matrix representation for the partitions. In particular, we let E = [eij ]
be an n×c indicator matrix with eij = 1 if input ai is in class j and
eij = 0 otherwise.

Let mj = 1
nj

∑
i∈Vj ai be the jth class mean for j = 1, . . . , c. The

between-class scatter matrix is defined as Sb =
∑c
j=1 nj(mj−m)(mj−

m)T . Conventional FDA solves the following generalized eigenproblem:

Sbxj = λjSxj , λ1 ≥ λ2 ≥ · · · ≥ λq > λq+1 = 0,

where q ≤ min{p, c−1} and where we refer to xj as the jth dis-
criminant direction. The above generalized eigenproblem can can be
expressed in matrix form:

SbX = SXΛ, (4.4)
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where X = [x1, . . . ,xq] (n×q) and Λ = diag(λ1, . . . , λq) (q×q).
Let Π = diag(n1, . . . , nc). Then Sb can be rewritten as

Sb = ATCnEΠ−1ETCnA.

Recall that S = ATCnCnA. Given these representations of S and Sb,
the problem in (4.4) can be solved by using the GSVD method [Loan,
1976, Paige and Saunders, 1981, Golub and Van Loan, 2012, Howland
et al., 2003]. Moreover, it is obvious that range(Sb) ⊆ range(ATCn) =
range(S). Thus, Theorem 4.2 provides a solution when S is singular
or nearly singular. Moreover, the method given in Theorem 3.10 is
appropriate for solving the FDA problem.

CCA is another subspace learning model [Hardoon et al., 2004]. The
primary focus is on the relationship between two groups of variables
(or features), whereas PCA considers interrelationships within a set of
variable. Mathematically, CCA is defined as a generalized eigenvalue
problem, so its solution can be borrowed from that of FDA.

4.3.1 Nonlinear Extensions

Reproducing kernel theory [Aronszajn, 1950] provides an approach
for nonlinear extensions of subspace methods. For example, kernel
PCA [Schölkopf et al., 1998], kernel FDA [Baudat and Anouar, 2000,
Mika et al., 2000, Roth and Steinhage, 2000], kernel CCA [Akaho, 2001,
Van Gestel et al., 2001, Bach and Jordan, 2002] have been successively
proposed and received wide applications in data analysis.

Kernel methods work in a feature space F , which is related to the
original input space X ⊂ Rp by a mapping,

ϕ : X → F .

That is, ϕ is a vector-valued function which gives a vector ϕ(a), called
a feature vector, corresponding to an input a ∈ X . In kernel meth-
ods, we are given a reproducing kernel K : X × X → R such that
K(a,b) = ϕ(a)Tϕ(b) for a,b ∈ X . The mapping ϕ(·) itself is typi-
cally not given explicitly. Rather, there exist only inner products be-
tween feature vectors in F . In order to implement a kernel method
without referring to ϕ(·) explicitly, one resorts to the so-called kernel
trick [Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004].
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Let L2(X ) be the square integrable Hilbert space of functions whose
elements are functions defined on X . It is a well-known result that if
K is a reproducing kernel for the Hilbert space L2(X ), then {K(·,b)}
spans L2(X ). Here K(·,b) represents a function that is defined on X
with values at a ∈ X equal to K(a,b). There are some common kernel
functions:

(a) Linear kernel: K(a,b) = aTb,

(b) Gaussian kernel or radial basis function (RBF):K(a,b) = exp
(
−∑p

j=1
(aj−bj)2

βj

)
with βj > 0,

(c) Laplacian kernel: K(a,b) = exp
(
−
∑p
j=1

|aj−bj |
βj

)
with βj > 0,

(d) Polynomial kernel: K(a,b) = (aTb + 1)d of degree d.

Given a training set of input vectors {a1, . . . ,an}, the kernel matrix
K = [K(ai,aj)] is an n× n SPSD matrix.



5
The QR and CUR Decompositions

The QR factorization and CUR decomposition are the two most im-
portant counterparts of SVD. These three factorizations apply to all
matrices. In Table 1.1 we have compared their primary focuses. The
SVD and QR factorization are two classical matrix theories. The CUR
decomposition aims to represent a data matrix in terms of a small num-
ber part of the matrix, which makes it easy for us to understand and
interpret the data in question. Here we present very brief introductions
to the QR factorization and CUR decomposition.

5.1 The QR Factorization

The QR factorization is another decomposition method applicable all
matrices. Given a matrix A ∈ Rm×n, the QR factorization is given by

A = QR,

where Q ∈ Rm×m is orthonormal and R ∈ Rm×n is upper triangular
(or low triangular). Let D be an m ×m diagonal matrix whose diag-
onal elements are either 1 or −1. Then A = (QD)(DR) is still a QR
factorization of A. Thus, we always assume that R has nonnegative
diagonal elements.

37
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Assume m ≥ n. The matrix A also has a thin QR factorization:

A = QR,

where Q ∈ Rm×n is currently column orthonormal, and R ∈ Rn×n is
upper triangular with nonnegative diagonal elements. If A is of rank
n, R is uniquely determined. In this case, Q = AR−1 is also uniquely
determined.

Asume A has rank r (≤ min{m,n}). Then there exists an m ×m
orthonormal matrix Q and an n× n permutation matrix P such that

QTAP =
[
R11 R12
0 0

]
,

where R11 is an r × r upper triangular matrix with positive diagonal
elements. This is called a rank revealing QR factorization.

Computation of the QR factorization can be arranged by the
novel Gram-Schmidt orthogonalization process or the modified Gram-
Schmidt which is numerically more stable [Trefethen and Bau III, 1997].
Additionally, Gu and Eisenstat [1996] proposed efficient algorithms for
computing a rank-revealing QR factorization [Hong and Pan, 1992].
Stewart [1999] devised efficient computational algorithms of truncated
pivoted QR approximations to a sparse matrix.

5.2 The CUR Decomposition

As we have see, SVD leads us to a geometrical representation, and the
QR factorization facilitates computations. They have little concrete
meaning. This makes it difficult for us to understand and interpret the
data in question.

Kuruvilla et al. [2002] have claimed: “it would be interesting to try
to find basis vectors for all experiment vectors, using actual experiment
vectors and not artificial bases that offer little insight.” Therefore, it is
of great interest to represent a data matrix in terms of a small number
of actual columns and/or actual rows of the matrix. Matrix column
selection and CUR matrix decomposition provide such techniques.

Column selection yields a so-called CX decomposition, and the CUR
decomposition can be be regarded as a special CX decomposition. The
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CUR decomposition problem has been widely discussed in the literature
[Goreinov et al., 1997a,b, Stewart, 1999, Tyrtyshnikov, 2000, Berry
et al., 2005, Drineas and Mahoney, 2005, Bien et al., 2010], and it has
been shown to be very useful in high dimensional data analysis.

The CUR was originally called a skeleton decomposition [Goreinov
et al., 1997a]. Let A ∈ Rm×n be a given matrix of rank r. Then there
exists a nonsingular r×r submatrix in A. Without loss of generality,
assume this nonsingular matrix is the first r× r principal submatrix of
A. That is, A can be partioned into the following form:

A =
[
A11 A12
A21 A22

]
,

where A11 is a r × r nonsingular matrix. Consider that [A21,A22] =
B[A11,A12] for some B ∈ R(m−r)×r. It follows from A21 = BA11 that
B = A21A−1

11 . Hence, A22 = A21A−1
11 A12. So it is obtained that

A =
[
A11
A21

]
A−1

11 [A11,A12].

In general case, let AI,J be the nonsingular submatrix where I =
{i1, . . . , ir} ⊂ [m] and J = {j1, . . . , jr} ⊂ [n]. Then it also hods that

A = CA−1
I,JR,

where C = A:,J and R = AI,: are respectively a subset of columns and
a subset of rows, of A.

In practical applications, however, it is intractable to select AI,J .
Alternatively, Stewart [1999] proposed a quasi Gram-Schmidt algo-
rithm, obtaining a sparse column-row (SCA) approximation of the orig-
inal matrix A [Berry et al., 2005]. The SCA approximation is of the
form A ≈ XTY, where X and Y consist of columns and rows of A,
and T minimizes ‖A−XTY‖2F . This algorithm is a deterministic peo-
cedure but computationally expensive.

The terminology of the CUR decomposition has been proposed by
Drineas and Mahoney [2005], Mahoney et al. [2008]. They reformulated
the idea based on random selection. A CUR decomposition algorithm
seeks to find a subset of c columns of A to form a matrix C ∈ Rm×c, a
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subset of r rows to form a matrix R ∈ Rr×n, and an intersection matrix
U ∈ Rc×r such that ‖A−CUR‖ξ is small. Accordingly, Ã = CUR is
used to approximate A.

Since there are (nc ) possible choices of constructing C and (mr ) pos-
sible choices of constructing R, obtaining the best CUR decomposition
is a hard problem. In Chapter 10 we will further study the CUR de-
composition problem via random approximation.

The CUR decomposition is also an extension of the novel Nyström
approximation to a general matrix. The Nyström method approximates
an SPSD matrix only using a subset of its columns, so it can allevi-
ate computation and storage costs when the SPSD matrix in question
is large in size. Thus, the Nyström method and its variants [Halko
et al., 2011, Gittens and Mahoney, 2013, Kumar et al., 2009, Wang and
Zhang, 2013, 2014, Wang et al., 2014b, Si et al., 2014] have been exten-
sively used in the machine learning community. For example, they have
been applied to Gaussian processes [Williams and Seeger, 2001], kernel
classification [Zhang et al., 2008, Jin et al., 2013], spectral clustering
[Fowlkes et al., 2004], kernel PCA and manifold learning [Talwalkar
et al., 2008, Zhang et al., 2008, Zhang and Kwok, 2010], determinantal
processes [Affandi et al., 2013], etc.



6
Variational Principles

Variational principles correspond to matrix perturbation theory [Stew-
art and Sun, 1990], which is the theoretical foundation to characterize
stability or sensitivity of a matrix computation algorithm. Thus, vari-
ational principles are important in analysis for error bounds of matrix
approximate algorithms (see Chapters 9 and 10).

In this chapter we specifically study variational properties for eigen-
values of a symmetric matrix as well as for singular values of a general
matrix. We will see that these results for eigenvalues and for singular
values are almost parallel. The cornerstones are the novel von Neumann
theorem [Neumann, 1937] and Ky Fan theorem [Fan, 1951]. We present
new proofs for them by using theory of matrix differentials. Addition-
ally, we present some majorization inequalities. They will be used in
the latter chapters, especially in investigating unitarily invariant norms
(see Chapter 7).

Given a matrix A ∈ Rm×n, we always let σ1(A) ≥ · · · ≥ σp(A)
be the singular values of A where p = min{m,n}. When A is sym-
metric, let λ1(A) ≥ · · · ≥ λn(A) be the eigenvalues of A. These
eigenvalues or singular values are always arranged in deceasing or-
der. Note that the eigenvalues are real but could be negative. Let
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λ(M) = (λ1(M), . . . , λn(M))T denote the eigenvalues of an n× n real
square matrix M, and σ(A) = (σ1(A), . . . , σp(A))T denote the singu-
lar values of an m × n real matrix A. Sometimes we also write them
the σi or the λi when they are explicit in the context for notational
simplicity.

6.1 Variational Properties for Eigenvalues

In this section we consider variational properties for eigenvalues of a
real symmetric matrix. It is well known that for an arbitrary symmetric
matrix, its eigenvalues are all real. The following cornerstone theorem
was originally established by von Neumann [1937].

Theorem 6.1 (von Neumann Theorem). Assume M ∈ Rn×n and N ∈
Rn×n are symmetric. Then

n∑
i=1

λi(M)λi(N) = max
QQT=In

tr(QMQTN).

Moreover,

n∑
i=i

λi(M)λn−i+1(N) = min
QQT=In

tr(QMQTN).

Proof. The second part directly follows from the first part because

min
QQT=In

tr(QMQTN) = − max
QQT=In

tr(QMQT (−N)).

We now present the proof of the first part. Make full EVDs of M
and N as M = UMΛMUT

M and N = UNΛNUT
N , where ΛM =

diag(λ1(M), . . . , λn(M)) and ΛN = diag(λ1(N), . . . , λn(N)), and UM

and UN are orthonormal. It is easily seen that

max
QQT=In

tr(QMQTN) = max
QQT=In

tr((UT
NQUM )ΛM (UT

NQUM )TΛN )

= max
QQT=In

tr(QΛMQTΛN ).
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Let Q = [qij ] = [q1, . . . ,qn]T . We now have

tr(QΛMQTΛN )

=
n∑
i=1

qTi ΛMqiλi(N)

=
n−1∑
i=1

i∑
j=1

qTj ΛMqj [λi(N)− λi+1(N)] + λn(N)
n∑
j=1

qTj ΛMqj

=
n−1∑
i=1

[λi(N)− λi+1(N)]
i∑

j=1

n∑
k=1

q2
jkλk(M) + λn(N)

n∑
j=1

λj(M).

Define W , [q2
ij ] which is doubly stochastic, and u = [u1, . . . , un]T

where uj =
∑n
k=1 q

2
jkλk(M). That is, u = Wλ(M). By Lemma 2.2, we

know that u ≺ λ(M). Accordingly,

tr(QΛMQTΛN ) ≤
n−1∑
i=1

[λi(N)−λi+1(N)]
i∑

j=1
λj(M) + λn(N)

n∑
j=1

λj(M)

=
n∑
i=1

λi(M)λi(N).

When Q = In, the equality holds. That is, UT
NQUM = In in the

original problem. The theorem follows.

The following theorem is a corollary of Theorem 6.1 when taking

N =
[
Ik 0
0 0

]
.

Theorem 6.2 (von Neumann Theorem). Assume M ∈ Rn×n is symmet-
ric. Then for k ∈ [n],

k∑
i=1

λi = max
QTQ=Ik

tr(QTMQ),

which is arrived when Q is the n×k matrix of the orthonormal vectors
associated with λ1, . . . , λk. Moreover,

n∑
i=n−k+1

λi = min
QTQ=Ik

tr(QTMQ).
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In the appendix we give an other proof based on theory of ma-
trix differentials. The von Neumann theorem describes the variational
principle of eigenvalues of a symmetric matrix. Using Theorems 6.2, we
have the following variational properties.

Proposition 6.1. Given two n× n real symmetric matrices M and N,
we have that

(1) λ(M + N) ≺ λ(M) + λ(N) and λ(M)− λ(N) ≺ λ(M−N).
(2)

∑k
i=1 λi(M + N) ≥

∑k
i=1 λi(M) +

∑n
j=n−k+1 λj(N) for k ∈ [n].

(3) (m11, . . . ,mnn) ≺ (λ1(M), . . . , λn(M)).

Proof. The proof is based on Theorem 6.2. First, for k ∈ [n− 1],
k∑
i=1

λi(M + N) = max
QTQ=Ik

{
tr(QTMQ) + tr(QTNQ)

}
≤ max

QTQ=Ik
tr(QTMQ) + max

QTQ=Ik
tr(QTNQ)

=
k∑
i=1

λi(M) +
k∑
i=1

λi(N).

Note that tr(M+N) = tr(M) + tr(N), so λ(M+N) ≺ λ(M) + λ(N).
Hence, λ(M)− λ(N) ≺ λ(M−N). Second,

k∑
i=1

λi(M + N) = max
QTQ=Ik

{
tr(QTMQ) + tr(QTNQ)

}
≥ max

QTQ=Ik

{
tr(QTMQ) + min

QTQ=Ik
tr(QTNQ)

}
=

k∑
i=1

λi(M) +
n∑

j=n−k+1
λj(N).

To prove the third part, we assume that m11 ≥ · · · ≥ mnn without loss
of generality. Now the result is obtained via

k∑
i=1

λi(M) = max
QTQ=Ik

tr(QTMQ) ≥ tr(HT
kMHk) =

k∑
i=1

mii,

where Hk consists of the first k columns of In for all k ∈ [n].
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Proposition 6.1-(3) is sometimes referred to as Schur’s theorem.
The second part of the following proposition is an extension of Schur’s
theorem.

Proposition 6.2. Let M =
[
M11 M12
M21 M22

]
be n×n real symmetric. Here

M11 is k × k. Then

(1) λi(M) ≥ λi(M11) ≥ λn−k+i(M) for i = 1, . . . , k;

and (2) (λ(M11),λ(M22)) ≺ λ(M).
Furthermore, for any column-orthonormal matrix Q ∈ Rn×k, we

have

(3) λi(M) ≥ λi(QTMQ) ≥ λn−k+i(M) for i = 1, . . . , k.

Proof. The first result directly follows from the well known interlacing
theorem [Horn and Johnson, 1985]. As for the third part, we can extend
Q to an orthonormal matrix Q̃ = [Q,Q⊥]. Consider that

Q̃TMQ̃ =
[

QTMQ QTMQ⊥
(Q⊥)TMQ (Q⊥)TMQ⊥

]
.

Thus,

λi(M) = λi(Q̃TMQ̃) ≥ λi(QTMQ) ≥ λn−k+i(Q̃TMQ̃) = λn−k+i(M).

We now consider the proof of the second part. Let the EVDs of
M11 and M22 be M11 = U1Λ1UT

1 and M22 = U2Λ2UT
2 . Then[

UT
1 0

0 UT
2

] [
M11 M12
M21 M22

] [
U1 0
0 U2

]
=
[

Λ1 UT
1 M12U2

UT
2 M21U1 Λ2

]
.

Since U1 and U2 are orthonormal, we have that λ(M11) = λ(Λ1),
λ(M22) = λ(Λ2), and

λ

([
UT

1 0
0 UT

2

] [
M11 M12
M21 M22

] [
U1 0
0 U2

])
= λ(M).

Applying Proposition 6.1-(3) completes the proof.
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6.2 Variational Properties for Singular Values

Theorems 6.1 and 6.2 can be extended to a general matrix. In this case,
we investigate singular values of the matrix instead. Theorems 6.3 and
6.4 correspond to Theorems 6.1 and 6.2, respectively.

Theorem 6.3 (Ky Fan Theorem). Given two matrices A ∈ Rm×n and
B ∈ Rm×n, let A and B have full SVDs A = UAΣAVT

A and B =
UBΣBVT

B, respectively. Let p = min{m,n}. Then
p∑
i=1

σi(A)σi(B) = max
XTX=Im,YTY=In

|tr(XTAYBT )|

= max
XTX=Im,YTY=In

tr(XTAYBT ),

which is achieved at X = UAUT
B and Y = VAVT

B.

Proof. Note that

tr(XTAYBT ) = 1
2tr

([
YT 0
0 XT

] [
0 AT

A 0

] [
Y 0
0 X

] [
0 BT

B 0

])
.

The theorem is directly obtained from Theorems 6.1 and 3.5.

Theorem 6.4 (Ky Fan Theorem). Given an m × n real matrix A, let
p = min{m,n}, and let the singular values of A be σ1, . . . , σp which
are arranged in descending order, with the corresponding left and right
singular vectors ui and vi. Then for any k ∈ [p],

k∑
i=1

σi = max
XTX=Ik,YTY=Ik

|tr(XTAY)| = max
XTX=Ik,YTY=Ik

tr(XTAY),

which is achieved at X = [u1, . . . ,uk] and Y = [v1, . . . ,vk].

The theorem can be obtained from Theorems 6.2 and 3.5 or from
Theorem 6.3. In the appendix we give the third proof.

Proposition 6.3. Given two matrices A ∈ Rm×n and B ∈ Rm×n, let
p = min{m,n}. Let Â be obtained by replacing the last r rows and/or
columns of A by zeros. Then
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(1) σ(A + B) ≺w σ(A) + σ(B).
(2) σi+j−1(A + B) ≤ σi(A) + σj(B) for i, j ≥ 1 and i+ j − 1 ≤ p.
(3) a ≺w σ(A) where a = (a11, . . . , app)T .
(4) For i ∈ [p− r], σr+i(A) ≤ σi(Â) ≤ σi(A).
(5) Let P ∈ Rm×r and Q ∈ Rn×r be column orthonormal matrices where

r ≤ p. Then σr+i(A) ≤ σi(PTA) ≤ σi(A) and σr+i(A) ≤ σi(AQ) ≤
σi(A) for i = 1, . . . , p− r.

Proof. The proof of Proposition 6.3-(1) and (3) is parallel to that
of Proposition 6.1-(1) and (3). Part-(2) is Weyl’s monotonicity the-
orem. It can be proven by the Courant-Fischer theorem (see The-
orem 3.4). Consider that σi(A) =

√
λi(ATA) =

√
λi(AAT ) and

σi(Â) =
√
λi(ÂT Â) =

√
λi(ÂÂT ). Part (4) follows from Proposi-

tion 6.2-(1). Part (5) follows then from Proposition 6.2-(3).

Theorem 6.5. Given two matrices A ∈ Rm×n and B ∈ Rm×n, let
si(A−B) = |σi(A)− σi(B)| for i ∈ [p] where p = min{m,n}. Then

k∑
i=1

s↓i (A−B) ≤
k∑
i=1

σi(A−B) for k = 1, . . . , p.

Proof. Consider the following two (m+n)×(m+n) symmetric matrices:

Ã =
[

0 A
AT 0

]
and B̃ =

[
0 B

BT 0

]
.

By Theorem 3.5, the eigenvalues of Ã are ±σ1(A), . . . ,±σp(A), to-
gether with m+n− 2p zeros; and similarly for B̃ as well as for Ã− B̃.
Thus, the p largest entries of λ(Ã− B̃) are σ1(A−B), . . . , σp(A−B).
Note that both σi(A) − σi(B) and σi(B) − σi(A) are the entries of
λ(Ã)−λ(B̃), so the p largest entries of λ(Ã)−λ(B̃) comprise the set
{s1(A −B), . . . , sp(A −B)}. Proposition 6.1 shows that λ(Ã − B̃) ≺
λ(Ã)− λ(B̃). This implies the result of the theorem.

Theorem 6.6. Let A ∈ Rm×n and B ∈ Rn×p be given, and let q =
min{m,n, p}. Then for k = 1, . . . , q,

k∏
i=1

σi(AB) ≤
k∏
i=1

σi(A)σi(B).
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If n = p = m, then equality holds for k = n. And

k∑
i=1

σi(AB) ≤
k∑
i=1

σi(A)σi(B) ≤
( k∑
i=1

σi(A)
)( k∑

i=1
σi(B)

)
.

Proof. Let AB = UΣVT be a full SVD of AB, and for k ≤ q let Uk

and Vk be the first k columns of U and V, respectively. Now take a
polar decomposition of BVk as BVk = QS. Since S2 = VT

kBTBVk

and by Proposition 6.3-(4), we obtain

det(S2) = det(VT
kBTBVk) ≤

k∏
i=1

σ2
i (B)

We further have that
k∏
i=1

σi(AB) = | det(UT
kABVk)| = |det(UT

kAQ) det(S)|

≤
k∏
i=1

σi(A)σi(B).

The above inequality again follows from Proposition 6.3-(4), When n =
p = m, then

n∏
i=1

σi(AB) = |det(AB)| = | det(A)| × | det(B)| =
n∏
i=1

σi(A)σi(B).

The second part follows from the first part and Lemma 2.4.

6.3 Appendix: Application of Matrix Differentials

Here we present alternative proofs for Theorem 6.2 and Theorem 6.4,
which are based on matrix differentials. It aims at further illustrating
how to use matrix differentials.

The Second Proof of Theorem 6.2. To solve the problem, we define the
Lagrangian function:

L(Q,C) = tr(QTMQ)− tr(C(QTQ− Ik)),
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where C is a k × k symmetric matrix of Lagrangian multipliers. Since

dL = tr(dQTMQ + QTMdQ)− tr(C(dQTQ + QTdQ)),

this shows that dL
dQ = 2MQ− 2QC. The KKT condition is now

MQ−QC = 0.

Clearly, if Ĉ , diag(λ1, . . . , λk) and Q̂ consists of the corresponding
orthonormal eigenvectors, they are a solution of the above equation. In
this setting, we see that tr(Q̂TMQ̂) =

∑k
i=1 λi.

Thus, we only need to prove that Q̂ is indeed the maximizer of the
original problem. We now compute the Hessian matrix of L w.r.t. Q at
Q = Q̂ and C = Ĉ. Since vec(MQ−QC) = (Ik⊗M−C⊗ In)vec(Q),
the Hessian matrix is given as

H = 2(Ik ⊗M− Ĉ⊗ In).

For any X ∈ Rn×k such that XT Q̂ = 0, it suffices for our purpose
to prove xTHx/2 ≤ 0 where x = vec(X). Take the full EVD of M
as M = UΛUT , where Λ = diag(λ1, . . . , λn) and U = [Q̂, Q̂⊥] such
that UTU = In. Denote Λ2 = diag(λk+1, . . . , λn) and Y = (Q̂⊥)TX =
[y1, . . . ,yk]. Then,

1
2xTHx = tr(XTMX)− tr(XĈXT )

= tr(XT Q̂⊥Λ2(Q̂⊥)TX)− tr(ĈXT (Q̂Q̂T + Q̂⊥(Q̂⊥)T )X)
= tr(YTΛ2Y)− tr(ĈYTY)

=
k∑
i=1

yTi Λ2yi −
k∑
i=1

λiyTi yi

=
k∑
i=1

yTi (Λ2 − λiIn−k)yi ≤ 0.

The Third Proof of Theorem 6.4. To solve the constrained problem in
the theorem, we now define the Lagrangian function:

L(X,Y,C1,C2) = tr(XTAY)−1
2tr(C1(XTX−Ik))−

1
2tr(C2(YTY−Ik)),
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where C1 and C2 are two k × k symmetric matrix of Lagrange multi-
pliers. Since

dL = tr(dXTAY)− 1
2tr(C1(dXTX + XTdX)),

dL = tr(XTAdY)− 1
2tr(C2(dYTY + YTdY)),

which yield that dL
dX = AY−XC1 and dL

dY = XAT −YC2. The KKT
condition is now

AY−XC1 = 0 and ATX−YC2 = 0.

It then follows from XTX = Ik and YTY = Ik that C1 = C2. We
denote C , C1 = C2. So,

AY−XC = 0,
ATX−YC = 0.

That is, [
0 A

AT 0

] [
X
Y

]
=
[
X
Y

]
C.

Clearly, if Ĉ , Σk = diag(λ1, . . . , λk), X̂ , Uk = [u1, . . . ,uk], and
Ŷ , Vk = [v1, . . . ,vk], then they are a solution of the above equation.
In this setting, we see that tr(X̂TAŶ) =

∑k
i=1 σi.

Thus, we only need to prove that (X̂, Ŷ) is the maximizer of the
original problem. We now compute the Hessian matrix of L w.r.t.
(X,Y) at (X,Y) = (X̂, Ŷ), and C = Ĉ. The Hessian matrix is given
as

H ,

 ∂2L
∂vec(X̂)∂vec(X̂)T

∂2L
∂vec(X̂)∂vec(Ŷ)T

∂2L
∂vec(Ŷ)∂vec(X̂)T

∂2L
∂vec(Ŷ)∂vec(Ŷ)T

 =
[
−Σk ⊗ Im Ik ⊗A
Ik ⊗AT −Σk ⊗ In

]
,

because vec(AY − XC) = (Ik ⊗ A)vec(Y) − (CT ⊗ Im)vec(X) and
vec(ATX−YC) = (Ik ⊗AT )vec(X)− (CT ⊗ In)vec(Y).

Note that [
X̂T 0
0 ŶT

] [
X̂ 0
0 Ŷ

]
= I2k.
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Thus, for any Z1 ∈ Rm×k and Z2 ∈ Rn×k such that ZT1 X̂ = 0 and
ZT2 Ŷ = 0, it suffices for our purpose to prove zTHz ≤ 0 where zT =
(vec(Z1)T , vec(Z2)T ). Compute

zTHz = [vec(Z1)T , vec(Z2)T ]
[
−Σk ⊗ Im Ik ⊗A
Ik ⊗AT −Σk ⊗ In

] [
vec(Z1)
vec(Z2)

]
= vec(Z2)T (Ik⊗AT )vec(Z1) + vec(Z1)T (Ik⊗A)vec(Z2)
− vec(Z1)T (Σk⊗Im)vec(Z1)− vec(Z2)T (Σk⊗In)vec(Z2)

= −tr(ZT1 Z1Σk)− tr(ZT2 Z2Σk) + 2tr(ZT1 AZ2) , ∆.

Take a thin SVD of A as A = UΣVT , where Σ = Σk ⊕ Σ−k,
U = [Uk,U−k], and V = [Vk,V−k]. Denote R1 = UT

−kZ1 and and
R2 = VT

−kZ2. Then tr(ZT1 AZ2) = tr(ZT1 U−kΣ−kVT
−k). And hence,

−∆ = tr(ZT1 ΣkZ1) + tr(ZT2 ΣkZ2)− 2tr(ZT1 U−kΣ−kVT
−kZ2)

≥ tr(ZT1 U−kUT
−kZ1Σk) + tr(ZT2 U−kUT

−kZ2Σk)
− 2tr(ZT1 U−kΣ−kVT

−kZ2)
= tr(RT

1 R1Σk) + tr(RT
2 R2Σk)− 2tr(RT

1 Σ−kR2)
≥ tr(RT

1 Σ−kR1) + tr(RT
2 Σ−kR2)− 2tr(RT

1 Σ−kR2)
= tr[(R1 −R2)TΣ−k(R1 −R2)] ≥ 0.

The last inequality uses the fact that tr(RT
1 R1Σk) ≥ tr(RT

1 Σ−kR1)
and tr(RT

2 R2Σk) ≥ tr(RT
2 Σ−kR2).



7
Unitarily Invariant Norms

In this chapter we study unitarily invariant norms of a matrix, which
can be defined via singular values of the matrix. Unitarily invariant
norms were contributed by J. von Neumann, Robert Schatten, and Ky
Fan. J. von Neumann established an equivalent relationship between
unitarily invariant norms and symmetric gauge functions. There are
two popular classes of unitarily invariant norms: the Ky Fan norms
and Schatten p-norms.

Parallel with the vector p-norms, the Schatten p-norms are defined
on singular values of a matrix. Their special cases include the spectral
norm, Frobenius norm, and nuclear norm. They have wide applications
in modern data analysis and computation. For example, the Frobenius
norm is used to measure approximation errors in regression and recon-
struction problems because it essentially equivalent to the `2-norm of a
vector. The spectral norm is typically used to describe convergence and
convergence rate of an iteration procedure. The nuclear norm provides
an effective approach to matrix low rank modeling.

We first briefly review matrix norms, and then present the notion of
symmetric gauge functions. Symmetric gauge functions facilitate us to
study unitarily invariant norms. First, it transforms a unitarily invari-

52
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ant norm on matrices to a norm on vectors equivalently. Second, it can
incorporate majorization theory. Accordingly, we give some important
properties of unitarily invariant norms.

7.1 Matrix Norms

A function f : Rm×n → R is said to be a matrix norm if the following
conditions are satisfied:

(1) f(A) > 0 for all nonzero matrix A ∈ Rm×n;

(2) f(αA) = |α|f(A) for any α ∈ R and any A ∈ Rm×n;

(3) f(A + B) ≤ f(A) + f(B) for any A and B ∈ Rm×n.

We denote the norm of a matrix A by ‖A‖. Furthermore, if

(4) ‖AB‖ ≤ ‖A‖‖B‖ where A ∈ Rm×n and B ∈ Rn×p,

the matrix norm is said to be consistent. In some literature, when one
refers to a matrix norm on Rn×n. it is required to be consistent. Here
we do not make this requirement.

There is an equivalence between any two norms. Let ‖ ·‖α and ‖ ·‖β
be two norms on Rm×n. Then there exist positive numbers α1 and α2
such that for all A ∈ Rm×n,

α1‖A‖α ≤ ‖A‖β ≤ α2‖A‖α.

Conditions (2) and (3) tell us that the norm is convex. Moreover, it is
continuous because

|‖A‖ − ‖B‖| ≤ ‖A−B‖ ≤ α‖A−B‖F , where α > 0.

A norm always companies with its dual. The dual is a norm. Moreover,
the dual of the dual norm is the original norm.

Definition 7.1. Let ‖ · ‖ be a given norm on Rm×n. Its dual (denoted
‖ · ‖∗) is defined as

‖A‖∗ = max
{
tr(ABT ) : B ∈ Rm×n, ‖B‖ = 1

}
.
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Proposition 7.1. The dual ‖ · ‖∗ has the following properties:

(1) The dual is a norm.

(2) (‖A‖∗)∗ = ‖A‖.

(3) tr(ABT ) ≤ |tr(ATB)| ≤ ‖A‖‖B‖∗ (or ‖A‖∗‖B‖).

There are two approaches for definition of a matrix norm. In the first
approach, the norm of matrix A is defined via its vectorization vec(A);
that is, ‖A‖ = ‖vec(A)‖, which obviously satisfies Conditions (1)-(3).
We refer to this class of the matrix norms asmatrix vectorization norms
for ease of exposition. Note that the Frobenius norm is a matrix vector-
ization norm because ‖A‖F = ‖vec(A)‖2. However, this class of matrix
norms are not always consistent. For example, let

A = B =
[
1 1
1 1

]
.

Since AB =
[
2 2
2 2

]
and

2 = ‖vec(AB)‖∞ > ‖vec(A)‖∞‖vec(B)‖∞ = 1,

this implies that the corresponding matrix norm is not consistent.
In the second approach, the matrix norm is defined by

‖A‖ = max
‖x‖=1

‖Ax‖,

which is also called the induced or operator norm.

Theorem 7.1. The operator norm on Rm×n is a consistent matrix
norm.

Proof. Given a matrix A ∈ Rm×n, the result is trivial If A = 0. Assume
that A 6= 0. Then there exists a nonzero vector z ∈ Rn for which
Az 6= 0. So we have ‖Az‖ > 0 and ‖z‖ > 0. Hence,

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ ≥

‖Az‖
‖z‖ > 0.
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Conditions (2)-(3) are directly obtained from the definition of the vector
norm. As for Condition (4), it can be established by

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖

for any x 6= 0. Thus,

‖AB‖ = max
x 6=0

‖ABx‖
‖x‖ ≤ ‖A‖‖B‖.

As we have shown, ‖A‖2 = max‖x‖2=1 ‖Ax‖2 = σ1(A). It is thus
called the spectral norm.

Note that ‖UAV‖2 = ‖A‖2 and ‖UAV‖F = ‖A‖F for any m×m
orthonormal matrix U and any n× n orthonormal matrix V. In other
words, they are unitarily invariant.

Definition 7.2. A matrix norm is said to be unitarily invariant if
‖UAV‖ = ‖A‖ for any unitary matrices U and V.

In this tutorial, we only consider real matrices. Thus, a unitarily
invariant norm should be termed as “orthogonally invariant norm.”
However, we still follow the term of the unitarily invariant norm and
denote it by ||| · |||.

Theorem 7.2. Let ‖ · ‖ be a given norm on Rm×n. Then it is unitarily
invariant if and only if its dual is unitarily invariant.

Proof. Suppose ‖ · ‖ is unitarily invariant, and let U ∈ Rm×m and
V ∈ Rn×n be orthonormal. Then

‖UAV‖∗ = max
{
tr(UAVBT ) : B ∈ Rm×n, ‖B‖ = 1

}
= max

{
tr(A(UTBVT )T ) : B ∈ Rm×n, ‖B‖ = 1

}
= max

{
tr(ACT ) : C ∈ Rm×n, ‖UCV‖ = 1

}
= max

{
tr(ACT ) : C ∈ Rm×n, ‖C‖ = 1

}
= ‖A‖∗.

The converse follows from the fact that (‖A‖∗)∗ = ‖A‖.

We find that ‖A‖2 = ‖σ(A)‖∞ and ‖A‖F = ‖σ(A)‖2; that is, they
correspond the norms on the vector σ(A) of the singular values of A.
This sheds light on the relationship of a unitarily invariant norm of a
matrix with its singular values.
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7.2 Symmetric Gauge Functions

In order to investigate the unitarily invariant norm, we first present the
notion of symmetric gauge functions.

Definition 7.3. A real function φ : Rn → R is called a symmetric gauge
function if it satisfies the following four conditions:

(1) φ(u) > 0 for all nonzero u ∈ Rn.

(2) φ(αu) = |α|φ(u) for any constant α ∈ R.

(3) φ(u + v) ≤ φ(u) + φ(v) for all u,v ∈ Rn.

(4) φ(Duπ) = φ(u) where uπ = (uπ1 , . . . , uπn) with π as a permutation of
[n] and D is an n× n diagonal matrix with ±1 diagonal elements.

Furthermore, the gauge function is called normalized if it satisfies the
condition:

(5) φ(1, 0, . . . , 0) = 1.

Conditions (1)-(3) show that that the gauge function is a vector
norm. Thus, it is convex and continuous. Condition (4) says that the
gauge function is symmetric.

Lemma 7.3. [Schatten, 1950] Let u,v ∈ Rn. If |u| ≤ |v|, then φ(u) ≤
φ(v) for every symmetric gauge function φ.

Proof. In terms of Condition (4), we can directly assume that u ≥ 0
and v ≥ 0. Currently, the argument is equivalent to

φ(ω1v1, . . . , ωnvn) ≤ φ(v1, . . . , vn)

for ωi ∈ [0, 1]. Thus, by induction, it suffices to prove

φ(v1, . . . , vn−1, ωvn) ≤ φ(v1, . . . , vn)

where ω ∈ [0, 1] for every symmetric gauge function φ. It follows from
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the following direct computation:

φ(v1, . . . , vn−1, ωvn)

= φ
(1+ω

2 v1+1−ω
2 v1, . . . ,

1+ω
2 vn−1+1−ω

2 vn−1,
1+ω

2 vn −
1−ω

2 vn
)

≤ 1 + ω

2 φ(v1, . . . , vn−1, vn) + 1− ω
2 φ(v1, . . . , vn−1,−vn)

= φ(v1, . . . , vn−1, vn).

Theorem 7.4. [Fan, 1951] Given two nonnegative vectors u,v ∈ Rn+,
then u ≺w v if and only if φ(u) ≤ φ(v) for every symmetric gauge
function φ.

Proof. The necessity is obtained by setting a set of special symmetric
gauge functions φk for k ∈ [n]. Specifically, they are defined as

φk(x) = max
1≤i1≤···≤ik≤n

k∑
l=1
|xil |.

where x = (x1, . . . , xn).
It remains to prove the sufficiency. Without loss of generality, we

assume that u1 ≥ · · · ≥ un and v1 ≥ · · · ≥ vn. Let z = (z1, . . . , zn)T
where zi = vi for i ∈ [n − 1] and zn = vn −

∑n
i=1(vi − ui). Obviously,

z ≤ v. And it follows from u ≺w v that u ≺ z. In terms of the theorem
of Hardy, Littlewood, and Pólya (see Lemma 2.2), there exists a doubly
stochastic matrix (say W) such that u = Wz. Since W(v − z) ≥ 0,
we have u ≤ Wv. Thus, by Lemma 7.3, φ(u) ≤ φ(Wv) for every
symmetric gauge function. Consider that a doubly stochastic matrix
can be expressed a convex combination of a set of permutation matrices
(see Lemma 2.3). We write W =

∑
j=1 αjPj where αj ≥ 0 and

∑
j αj =

1, and the Pj are permutation matrices. Accordingly,

φ(u) ≤ φ(
∑
j

αjPjv) ≤
∑
j

αjφ(Pjv) =
∑
j

αjφ(v) = φ(v).
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It is worth noting that the proof of Theorem 7.4 implies that if
φk(u) ≤ φk(v) for k ∈ [n], then φ(u) ≤ φ(v) for every symmetric
gauge function φ. In other words, an infinite family of norm inequalities
follows from a finite one.

Definition 7.4. The dual of a symmetric gauge function φ on Rn is
defined as

φ∗(u) , max
{
uTv : v ∈ Rn, φ(v) = 1

}
.

Proposition 7.2. Let φ∗ be the dual of the symmetric gauge function
φ. Then φ∗ is also a symmetric gauge function. Moreover, (φ∗)∗ = φ.

Proof. For a nonzero vector u ∈ Rn, then φ(u) > 0. Hence,

max
φ(v)=1

uTv ≥ uTu
φ(u) > 0.

It is also seen that

φ∗(u+v) = max
φ(z)=1

(u+v)T z ≤ max
φ(z)=1

uT z + max
φ(z)=1

vT z ≤ φ∗(u) + φ∗(v).

As for the symmetry of φ∗ can be directly obtained from that of φ.
Finally, note that φ∗ is a norm on Rn. Thus, (φ∗)∗ = φ.

7.3 Unitarily Invariant Norms via SGFs

There is a one-to-one correspondence between a unitarily invariant
norm and a symmetric gauge function (SGF).

Theorem 7.5. If ||| · ||| is a given unitarily invariant norm on Rm×n, then
there is a symmetric gauge function φ on Rq where q = min{m,n} such
that |||A||| = φ(σ(A)) for all A ∈ Rm×n.

Conversely, if φ is a symmetric gauge function on Rq, then |||A||| ,
φ(σ(A)) is a unitarily invariant norm on Rm×n.

Proof. Given a unitarily invariant norm ||| · ||| on Rm×n and a vector
x ∈ Rq, define φ(x) , |||X||| where X = [xij ] ∈ Rm×n satisfying that
xii = xi for i ∈ [q] and all other elements are zero. That φ is a norm on
Rq follows from the fact that ||| · ||| is a norm. The unitary invariance of
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||| · ||| then implies that φ satisfies the symmetry. Now let A = UΣVT

be the full SVD of A. Then |||A||| = |||UΣVT ||| = |||Σ||| = φ(σ(A)).
Conversely, if φ is a symmetric gauge function, for any A ∈ Rm×n

define |||A||| = φ(σ(A)). We now prove that ||| · ||| is a unitarily invariant
norm. First, that |||A||| > 0 for A 6= 0 and |||αA||| = |α||||A||| for any
constant α follows the fact that φ is a norm. The unitary invariance of
||| · ||| follows from that for any orthonormal matrices U (m×m) and V
(n× n), UAV and A have the same singular values. Finally,

|||A + B||| = φ(σ(A + B)) ≤ φ(σ(A) + σ(B))
≤ φ(σ(A)) + φ(σ(B))
= |||A|||+ |||B|||.

Here the first inequality follows Proposition 6.3 and Theorem 7.4.

The following theorem implies that there is also a one-one corre-
spondence between the dual of a symmetric gauge function and a dual
unitarily invariant norm.

Theorem 7.6. Let φ∗ be the dual of symmetric gauge function φ. Then
|||A||| = φ(σ(A)) if and only if |||A|||∗ = φ∗(σ(A)).

Proof. Assume that |||A||| = φ(σ(A)). Then

|||A|||∗ = max
{
tr(ATB) : B ∈ Rm×n, |||B||| = 1

}
= max

{
tr(ΣT

AUT
ABVA) : φ(σ(B)) = 1

}
,

where A = UAΣAVT
A is a full SVD of A. By Theorem 6.3, we have

tr(VT
ABTUAΣA) ≤ max

UTU=Im,VTV=In
tr(VTBTUΣA) =

q∑
i=1

σi(A)σi(B).

When letting B = UAΣBVT
A as a full SVD of B, we can obtain that

|||A|||∗ = max
{
tr(ΣT

AΣB), φ(σ(B)) = 1
}

= φ∗(σ(A)).

Conversely, the result follows from the fact that (φ∗)∗ = φ.

Given a matrix A ∈ Rm×n, let it have a full SVD: A = UΣVT .
Then |||A||| = |||Σ|||. As we have seen, for x ∈ Rn the function

φ(x) , max
1≤i1≤···≤ik≤n

k∑
l=1
|xil |
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is a symmetric gauge function. Thus,
∑k
i=1 σi(A) defines also a class of

unitarily invariant norms which are the so-called Ky Fan k-norms.
Clearly, the vector p-norm ‖ · ‖p for p ≥ 1 is a symmetric gauge

function. Thus, Theorem 7.5 shows that |||A|||p , ‖σ(A)‖p for p ≥
1 are a class of unitarily invariant norms. They are well known as
the Schatten p-norms. Thus, ‖A‖F = ‖σ(A)‖2 = |||A|||2 and ‖A‖2 =
‖σ(A)‖∞ = |||A|||∞.

When p = 1, ‖A‖∗ , |||A|||1 = ‖σ(A)‖1 =
∑min{m,n}
i=1 σi(A) is called

the nuclear norm or trace norm, which has been widely used in many
machine learning problems such as matrix completion, matrix data
classification, multi-task learning, etc. [Srebro et al., 2004, Cai et al.,
2010, Mazumder et al., 2010, Liu et al., 2013, Luo et al., 2015, Kang
et al., 2011, Pong et al., 2010, Zhou and Li, 2014]. Parallel with the
`1-norm which is used as convex relaxation of the `0-norm [Tibshirani,
1996], the nuclear norm is a convex alternative of the matrix rank. Since
the nuclear norm is the best convex approximation of the matrix rank
over the unit ball of matrices, this makes it more tractable to solve the
resulting optimization problem (see Example 8.1 below).

7.4 Properties of Unitarily Invariant Norms

Theorem 7.5 opens an approach for exploring unitarily invariant norms
by using symmetric gauge functions and majorization theory. We will
see that this makes things more tractable.

Theorem 7.7. Let ||| · ||| be a unitarily invariant norm on Rn×n. Then
it is consistent.

Theorem 7.7 follows immediately from Theorem 6.6. However, when
the norm is defined on Rm×n, Theorem 6.6 can not help to establish
the consistency of the corresponding unitarily invariant norm.

As an immediate corollary of Theorem 7.5, we have the following
result, which shows that unitarily invariant norms are monotone.

Theorem 7.8. Let ||| · ||| be a given unitarily invariant norm on Rm×n.
Then |||A||| ≤ |||B||| if and only if σ(A) ≺w σ(B).
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Proposition 7.3. Given a matrix A ∈ Rm×n, let [A]r be obtained by
replacing the last r rows and r columns of A with zeros, and 〈A〉r
by replacing the last r rows or columns of A with zeros. Let q =
min{m,n}. Then for any r ∈ [q],

|||[A]r||| ≤ |||〈A〉r||| ≤ |||A|||.

Proof. Part (1) directly follows from Proposition 6.3 which shows that
σ([A]r) ≺w σ(〈A〉r) ≺w σ(A).

Proposition 7.4. Given two matrices A ∈ Rm×n and B ∈ Rm×n, we
have that

|||diag(σ(A)− σ(B))||| ≤ |||A−B|||.

Furthermore, if both A and B are symmetric matrixes in Rm×m, then

|||diag(σ(A)− σ(B)) ≤ |||diag(λ(A)− λ(B))|||||| ≤ |||A−B|||.

Proof. The first part of the proposition is immediately obtained from
Theorem 6.5. As for the second part, Proposition 6.1-(i) says that
λ(A)−λ(B) ≺ λ(A−B). It then follows from Lemmas 2.2 and 2.3 that
λ(A) − λ(B) =

∑
j αjPjλ(A − B) where the αj ≥ 0 and

∑
j αj = 1,

and the Pj are some permutation matrices. Accordingly, for every sym-
metric gauge function φ on Rm, we have that

φ(λ(A)− λ(B)) = φ(
∑
j

αjPjλ(A−B)) ≤
∑
j

αjφ(Pjλ(A−B))

=
∑
j

αjφ(λ(A−B)) = φ(λ(A−B)),

which implies that |||diag(λ(A) − λ(B))|||||| ≤ |||A − B|||. Additionally,
consider that for a symmetric matrix M, it holds that σi(M) = |λi(M)|.
Hence, we have that

|λi(A)− λi(B)| ≥
∣∣|λi(A)| − |λi(B)|

∣∣ = |σi(A)− σi(B)|.

This concludes the proof.

As a direct corollary of Proposition 6.5, we have that

|σi(A)− σi(B)| ≤ ‖A−B‖2, for i = 1, . . . , q,
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where q = min{m,n}, and√√√√ q∑
i=1

(σi(A)− σi(B))2 ≤ ‖A−B‖F .

When A and B are both symmetric, we also have that

|λi(A)− λi(B)| ≤ ‖A−B‖2, for i = 1, . . . ,m,√√√√ m∑
i=1

(λi(A)− λi(B))2 ≤ ‖A−B‖F .

The latter result is well known as the Hoffman-Wielandt theorem. Note
that the Hoffman-Wielandt theorem still hods when A and B are nor-
mal [Stewart and Sun, 1990].

Theorem 7.9. Let ||| · ||| be an arbitrary unitarily invariant norm on
Rm×n, and E11 ∈ Rm×n have the entry 1 in the (1, 1)th position and
zeroes elsewhere. Then

(a) |||A||| = |||AT |||.
(b) σ1(A)|||E11||| ≤ |||A||| ≤ ‖A‖∗|||E11|||.
(c) If the symmetric gauge function φ corresponding to the norm ||| · ||| is

normalized (i.e., φ(1, 0, 0, . . . , 0) = 1), then

‖A‖2 ≤ |||A||| ≤ ‖A‖∗.

Proof. Part (a) is due to that φ(σ(A)) = φ(σ(AT )).
If φ(1, 0, . . . , 0) = 1, then |||E11||| = 1. Thus, we can have Part (c)

from Part (b). Assume A is nonzero. Otherwise, the result is trivial.
Let q = min{m,n}. First,

|||A||| = φ(σ1(A), . . . , σq(A)) = σ1(A)φ(1, σ2(A)/σ1(A), . . . , σq(A)/σ1(A))
≥ σ1(A)φ(1, 0, . . . , 0) = σ1(A)|||E11|||.

Since
(
σ1(A)/

∑q
i=1 σi(A), . . . , σq(A)/

∑q
i=1 σi(A)

)
≺ (1, 0, . . . , 0), we

have

|||A||| = (
q∑
i=1

σi(A))φ
(
σ1(A)/

q∑
i=1

σi(A), . . . , σq(A)/
q∑
i=1

σi(A)
)

≤ ‖A‖∗φ(1, 0, . . . , 0) = ‖A‖∗|||E11|||.
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Note that a norm ‖ · ‖ on Rm×n is said to be self adjoint if
‖A‖ = ‖AT ‖ for any A ∈ Rm×n. Thus, Theorem 7.9-(a) shows that
the unitarily invariant norm is self-adjoint.

It is worth mentioning that |||Eij ||| = |||E11||| where Eij ∈ Rm×n

has entry 1 in the (i, j)th position and zeros elsewhere. Moreover, the
Schatten p-norms satisfy |||E11|||p = 1. Theorem 7.9 says that for any
unitarily invariant norm ||| · ||| such that |||E11||| = 1,

1 ≤ |||A|||
‖A‖2

≤ ‖A‖∗
‖A‖ 2

≤ rank(A).

Recall that
∑q

i=1 σ
2
i (A)

σ2
1(A) = ‖A‖2

F

‖A‖2
2
and

∑q

i=1 σi(A)
σ1(A) = ‖A‖∗

‖A‖2
, so called sta-

ble rank and nuclear rank (see Definition 3.2). They have been found
usefulness in the analysis of matrix multiplication approximation [Ma-
gen and Zouzias, 2011, Cohen et al., 2015, Kyrillidis et al., 2014].

Theorem 7.10. Let M ∈ Rm×m, N ∈ Rn×n, and A ∈ Rm×n such that
the block matrix [

M A
AT N

]
is SPSD. Then

|||M|||+ |||N||| ≥ 2|||A|||.

Proof. Without loss of generality, we assume m ≥ n. Let A = UΣVT

be a thin SVD of A. Consider that

[UT ,−VT ]
[

M A
AT N

] [
U
−V

]
= UTMU + VTNV−UTAV−VTATU

is PSD. Hence, |||UTMU + VTNV||| ≥ 2|||Σ|||. That is,

|||VTUTMUV + N||| ≥ 2|||A|||.

Note that

|||VTUTMUV + N||| ≤ |||VTUTMUV|||+ |||N||| ≤ |||M|||+ |||N|||.
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Proposition 7.5. Given a matrix A ∈ Rm×n, then the following holds

|||A||| = min
X,Y:XYT=A

1
2
{
|||XXT |||+ |||YYT |||

}
.

If rank(A) = r ≤ min{m,n}, then the minimum above is attained at a
rank decomposition A = X̂ŶT where X̂ = UrΣ1/2

r and Ŷ = VrΣ1/2
r ,

and A = UrΣrVT
r is a condensed SVD of A.

Proof. Let A = XYT be any decomposition of A. Then[
X
Y

]
[XT ,XT ] =

[
XXT XYT

YXT YYT

]

is SPSD. Thus,
1
2
[
|||XXT |||+ |||YYT |||

]
≥ |||A|||.

When X , X̂ = UrΣ1/2
r and Y , Ŷ = VrΣ1/2

r , it holds that |||A||| =
1
2
[
|||X̂X̂T |||+ |||ŶŶT |||

]
.

Since 1
2

[
|||XXT |||+ |||YYT |||

]
≥
√
|||XXT |||

√
|||YYT |||,

|||A||| ≥ min
X,Y:XYT=A

√
|||XXT |||

√
|||YYT |||.

When taking X̂ = UrΣ1/2
r VT

r and Ŷ = VrΣ1/2
r VT

r , one has

|||A||| =
√
|||X̂X̂T |||

√
|||ŶŶT |||.

This thus leads us to the following proposition.

Proposition 7.6. Given a matrix A ∈ Rm×n, then the following holds

|||A||| = min
X,Y:XYT=A

√
|||XXT |||

√
|||YYT |||.

Accordingly, the following inequality hods:

|||XYT ||| ≤ |||XXT |||1/2|||YYT |||1/2. (7.1)

This is a form of the Cauchy-Schwarz inequality under the unitarily
invariant norms.
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As a corollary of Proposition 7.5, the following proposition imme-
diately follows. Moreover, this proposition was widely used in matrix
completion problems, because an optimization problem regularized by
the Frobenius norm is solved more easily than that regularized by the
nuclear norm [Hastie et al., 2014].

Proposition 7.7. [Srebro et al., 2004, Mazumder et al., 2010] Given a
matrix A ∈ Rm×n, then the following holds

‖A‖∗ = min
X,Y:XYT=A

1
2
{
‖X‖2F + ‖Y‖2F

}
.

If rank(A) = k ≤ min{m,n}, the minimum above is attained at some
rank decomposition.

The following theorem shows that the Frobenius norm has a
so-called matrix-Pythagoras’ property. However, for other Schatten
norms, there needs a strong condition to make the property hold.

Theorem 7.11. Let A,B ∈ Rm×n. If ABT = 0 or ATB = 0, then

‖A + B‖2F = ‖A‖2F + ‖B‖2F ,

max{‖A‖22, ‖B‖22} ≤ ‖A + B‖22 ≤ ‖A‖22 + ‖B‖22.
If both ABT = 0 and ATB = 0 are satisfied, then

|||A + B|||pp = |||A|||pp + |||B|||pp

for 1 ≤ p <∞ and ‖A + B‖2 = max{‖A‖2, ‖B‖2}.

Proof. Since (A + B)T (A + B) = ATA + BTB when ATB = 0, the
Pythagorean property for the Frobenius norm is obvious. As for the
spectral norm, it is easily seen that

‖A + B‖22 = max
‖x‖2=1

xT (A + B)T (A + B)x

= max
‖x‖2=1

xT (ATA + BTB)x

≤ max
‖x‖2=1

xTATAx + max
‖x‖2=1

xTBTBx

= ‖A‖22 + ‖B‖22.
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Let the condensed SVDs of A and B be A = UAΣAVT
A and B =

UBΣBVT
B. If ATB = 0 and ABT = 0, then VT

AVB = 0 and UT
AUB =

0. Note that

A + B = [UA,UB]
[
ΣA 0
0 ΣB

] [
VT
A

VT
B

]

is the condensed SVD of A+B. So the nonzero singular values of A+B
consist of those of A and of B. The theorem accordingly follows.

Let us end this chapter by showing a relationship among the matrix
operator, matrix vectorization, and unitarily invariant norms.

Theorem 7.12. Let f be a matrix norm on Rm×n.

(a) The norm f is both unitarily invariant and operator norm if and only
if f(A) = ‖A‖2 for any A ∈ Rm×n. In other words, the spectral norm
is only one operator norm that satisfies the self-adjoint property.

(b) Given a matrix A ∈ Rm×n, f(A) , ‖vec(A)‖ is unitarily invariant if
and only if it is the norm γ‖A‖F for some γ > 0.

Proof. The proof of Part (a) can be found in Corollary 5.6.35 of Horn
and Johnson [1985]. As for Part (b), it is obvious that the Frobe-
nius norm is both unitarily invariant and vectorization norm. Con-
versely, given any A ∈ Rm×n, the vectorization norm is defined as
‖a‖ where a = vec(A). Recall that the vector a can be regarded as
an mn × 1 matrix. Let a = UaΣavTa be the full SVD of a. Then
it is easily seen that Σa = (‖A‖F , 0, . . . , 0)T . Moreover, we can set
va = 1. For any orthonormal matrices U ∈ Rm×m and V ∈ Rn×n,
we have that f(UAVT ) = ‖vec(UAVT )‖ = ‖(V ⊗U)vec(A)‖ = ‖a‖
due to the unitary invariance. Moreover, we have that ‖a‖ = ‖Σa‖ =
‖A‖F ‖(1, 0, . . . , 0)‖. Letting γ = ‖(1, 0, . . . , 0)‖ > 0, we complete the
proof. Notice that if the norm is normalized, then γ = 1.



8
Subdifferentials of Unitarily Invariant Norms

In the previous chapters, we have used matrix differential calculus. Let
f : Rm×n → R. We have discussed the gradient and Hessian of f w.r.t.
X ∈ Rm×n. Especially, the function f : Rm×n → R is defined as a trace
function. Such a function is differentiable. In this chapter we consider
f to be a unitarily invariant norm.

Norm functions are not necessarily differentiable. For example, the
spectral norm and nuclear norm are not differentiable. But norm func-
tions are convex and continuous, so we can resort to theory of subd-
ifferentials [Rockafellar, 1970, Borwein and Lewis, 2006]. Indeed, the
subdifferentials of unitarily invariant norms have been studied by Wat-
son [1992] and Lewis [2003].

Using the properties of unitarily invariant norms and the SVD the-
ory, we present directional derivatives and subdifferentials of unitarily
invariant norms. As two special cases, we report the subdifferentials of
the spectral norm and nuclear norm. These two norms have been widely
used in machine learning such as matrix low rank approximation. We
illustrate applications of the subdifferentials in optimization problems
regularized by either the spectral norm or the nuclear norm. We also
study the use of the subdifferentials of unitarily invariant norms in solv-

67
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ing least squares estimation problems, whose loss function is defined as
any unitarily invariant norm.

8.1 Subdifferentials

Let ‖ · ‖ be a given norm on Rm×n, and A be a given matrix in Rm×n.
The subdifferential, a set of subgradients, of ‖A‖ is defined as{

G ∈ Rm×n : ‖B‖ ≥ ‖A‖+ tr((B−A)TG) for all B ∈ Rm×n
}
,

and denoted by ∂‖A‖. When the norm ‖ · ‖ is differentiable, the sub-
gradient degenerates to the gradient. That is, the subdifferential is
a singleton. For example, when taking the squared Frobenius norm
‖A‖2F = tr(ATA), ∂‖A‖2F = {2A}.

Lemma 8.1. Let A ∈ Rm×n be a given matrix. Then G ∈ ∂‖A‖ if and
only if ‖A‖ = tr(GTA) and ‖G‖∗ ≤ 1.

Proof. The sufficiency is immediate. Now assume that G ∈ ∂‖A‖. Then
taking B = 2A yields ‖G‖ ≥ tr(ATG) and taking B = 1

2A yields
1
2‖A‖ ≤

1
2tr(ATG), which implies that ‖A‖ = tr(ATG). Subsequently,

‖B‖ ≥ tr(GTB) for all matrices B. Thus, the dual norm satisfies

‖G‖∗ = max{tr(GTB) : ‖B‖ = 1} ≤ 1.

We especially consider the subdifferential of unitarily invariant
norms. Given a unitarily invariant norm ||| · ||| on Rm×n, let p =
min{m,n}. Theorem 7.5 shows there exists a symmetric gauge function
φ : Rp → R associated with the norm ||| · |||. Thus, this encourages us
to define the subdifferential of unitarily invariant norms via the subd-
ifferential of symmetric gauge functions.

The subdifferential of the symmetric gauge function φ at x ∈ Rp is

∂φ(x) , {z ∈ Rp : φ(y) ≥ φ(x) + (y− x)T z for all y ∈ Rp}.

In terms of Lemma 8.1, that z ∈ ∂φ(x) is equivalent to that φ(x) = xT z
and φ∗(z) ≤ 1. Here φ∗ is the dual of φ (see Definition 7.4) which is a
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symmetric gauge function for the dual norm ||| · |||∗. That is, φ∗(σ(A)) =
|||A|||∗ (see Theorem 7.6).

Let us return to the subdifferential of unitarily invariant norms.
The following lemma gives the directional derivative of |||A|||.

Lemma 8.2. Let ||| · ||| be a given unitarily invariant norm on Rm×n, and
φ be the corresponding symmetric gauge function. Then the directional
derivative of the norm at A ∈ Rm×n in a direction R ∈ Rm×n is

lim
t↓0

|||A+tR||| − |||A|||
t

= max
d∈∂φ(σ(A))

p∑
i=1

diuTi Rvi = max
G∈∂|||A|||

tr(RTG).

Here p = min{m,n}, U = [u1, . . . ,um], V = [v1, . . . ,vn], Σ =
diag(σ(A)), and A = UΣVT is a full SVD of A.

Proof. By Lemma 2.5, we immediately have

lim
t↓0

|||A + tR||| − |||A|||
t

= max
G∈∂|||A|||

tr(RTG).

We now prove the first equality. Let z = (uT1 Rv1, . . . ,uTp Rvp)T . Con-
sider that

|||A + tR||| = |||Σ + tUTRV||| = φ(σ(Σ + tUTRV)) ≥ φ(σ(A) + tz)

because σ(A)+tz ≺w σ(Σ+tUTRV) by Proposition 6.3. Accordingly,
we have that

lim
t↓0

|||A+tR||| − |||A|||
t

≥ lim
t↓0

φ(σ(A)+tz)− φ(σ(A))
t

= max
d∈∂φ(σ(A))

dT z.

The above equality follows from Lemma 2.5, when applied to the sym-
metric gauge function φ.

On the other hand, let σ(t) , σ(A+tR) = σ(Σ+tUTRV). Now
we have

|||A||| − |||A+tR|||
t

= |||A+tR−tR||| − |||A+tR|||
t

= φ(σ(Σ+tUTRV−tUTRV))− φ(σ(t))
t

≥ φ(σ(t)− tz)− φ(σ(t))
t

≥ −d(t)T z [where d(t) ∈ ∂φ(σ(t))].
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The above first inequality follows from σ(t)− tz ≺w σ(A). The second
inequality is based on the property of the subgradient of φ at σ(t).
Note that φ is a continuous function. By the definition of ∂φ(σ(t)), it
is directly verified that lim

t→0+
d(t)→ d0 ∈ ∂φ(σ(A)). Thus,

lim
t↓0

|||A+tR||| − |||A|||
t

≤ lim
t↓0

d(t)T z = dT0 z ≤ max
d∈∂φ(σ(A))

dT z.

This implies that the first equality also holds.

Theorem 8.3. Let A ∈ Rm×n have a full SVD A = UΣVT , and let
σ = dg(Σ). Then

∂|||A||| = conv
{
UDVT : d ∈ ∂φ(σ),D = diag(d)

}
.

where φ is a symmetric gauge function corresponding to the norm ||| · |||.

Here the notation “conv{·}” represents the convex hull of a set,
which is closed and convex. If G ∈ ∂|||A|||, Theorem 8.3 says that G
can be expressed as

G =
∑
i

αiU(i)D(i)(V(i))T ,

where αi ≥ 0,
∑
i αi = 1, A = U(i)Σ(V(i))T is a full SVD, di ∈ φ(σ),

and D(i) = diag(di). According to Corollary 3.3, we can rewrite G as

G =
∑
i

αiUQ(i)D(i)(P(i))TVT , (8.1)

where P(i) and Q(i) are defined as P and Q in Corollary 3.3; i.e., they
satisfy that Q(i)Σ(P(i))T = Σ and (Q(i))TΣP(i) = Σ.

Proof. First of all, we denote the convex hull on the right-hand side by
G(A). Assume that G ∈ G(A). We now prove G ∈ ∂|||A|||. Based on
Lemma 8.1, we try to show that |||A||| = tr(ATG) and |||G|||∗ ≤ 1. In
terms of the above discussion, we can express G as in (8.1). Thus,

tr(ATG) =
∑
i=1

αitr(ATUQ(i)D(i)(P(i))TVT )

=
∑
i=1

αitr((P(i))TΣTQ(i)D(i)) =
∑
i=1

αitr(ΣTD(i))

=
∑
i=1

αidTi σ = φ(σ) = |||A|||.
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Additionally,

|||G|||∗ = max
|||R|||≤1

tr(GTR) = max
|||R|||≤1

tr
(
RT

∑
i=1

αiU(i)D(i)(V(i))T
)
.

Since for each i,

|||U(i)D(i)(V(i))T |||∗ = |||D(i)|||∗ = φ∗(di) ≤ 1,

and by Proposition 7.1 we have

tr(RTU(i)D(i)(V(i))T ) ≤ |||R||| × |||U(i)D(i)(V(i))T |||∗ ≤ |||R|||.

Thus, |||G|||∗ ≤ 1. In summary, we have G ∈ ∂|||A|||.
Conversely, assume that G ∈ ∂|||A||| but G /∈ G(A). Then by the

well-known separation theorem [Borwein and Lewis, 2006, see Theorem
1.1.1] there exists a matrix R ∈ Rm×n such that

tr(RTX) < tr(RTG) for all X ∈ G(A).

This implies that

max
d∈∂φ(σ)

∑
i=1

diuTi Rvi = max
X∈G(A)

tr(RTX) < max
G∈∂|||A|||

tr(RTG).

This contradicts with Lemma 8.2. Thus, the theorem follows.

We are especially interested in the spectral norm ‖ · ‖2 and the
nuclear norm ‖·‖∗. As corollaries of Theorem 8.3, we have the following
the results.

Corollary 8.4. Let A have rank r ≤ p = min{m,n} and A = UrΣrVT
r

be a condensed SVD. Then the subdifferential of ‖A‖∗ is give as

∂‖A‖∗ =
{
UrVT

r +W : W ∈ Rm×n s.t. UT
r W = 0,WVr = 0, ‖W‖2 ≤ 1

}
.

Proof. For the nuclear norm, the corresponding symmetric gauge func-
tion is φ(σ) = ‖σ‖1 =

∑p
i=1 σi. Moreover,

∂‖σ‖1 =
{
u ∈ Rp : ‖u‖∞ ≤ 1 and ui = 1 for i = 1, . . . , r

}
.

Let G ∈ ∂‖A‖∗. By Theorem 8.3 and Corollary 3.3, we have

G =
∑
i=1

αiUQ(i)D(i)(P(i))TVT

= UrVT
r +

∑
i=1

αiU−rQ(i)
0 D(i)

−r(P
(i)
0 )TVT

−r,
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where the αi ≥ 0 and
∑
i=1 αi = 1, D(i) = dg(di), di ∈ ∂φ(σ), and D(i)

−r
is the last (m − r) × (n − r) principal submatrix of D(i). Here Q(i) ∈
Rm×m, P(i) ∈ Rn×n, Q(i)

0 ∈ R(m−r)×(m−r), and P(i)
0 ∈ R(n−r)×(n−r) are

orthonormal matrices, which are defined in Corollary 3.3. Let

W , U−r
[∑
i=1

αiQ(i)
0 D(i)

−r(P
(i)
0 )T

]
VT
−r. (8.2)

Obviously, UT
r W = 0 and WVr = 0. Moreover,

‖W‖2 ≤
∑
i=1

αi‖D(i)
−r‖2 ≤ 1.

We can also see that any matrix W satisfying the above three condi-
tions always has an expression as in (8.2).

Corollary 8.5. Let the largest singular value σ1 of A ∈ Rm×n have
multiplicity t, and Ut and Vt consist of the first t columns of U and
V respectively. Then

∂‖A‖2 =
{
UtHVT

t : H ∈ Rt×t s.t. H is SPSD, tr(H) = 1
}
.

Proof. The corresponding symmetric gauge function is φ(σ) = ‖σ‖∞,
and its subdifferential is

∂‖σ‖∞ = conv{ei : i = 1, . . . , t},

where ei is the ith column of the identity matrix. It then follows from
Theorem 8.3 that for any G ∈ ∂‖A‖2, it can be written as

G =
∑
i=1

αiUtQ(i)D(i)
t (Q(i))TVT

t ,

where the αi ≥ 0 and
∑
i=1 αi = 1, and Q(i) is an arbitrary t × t

orthonormal matrix (see Theorem 3.2). Here Di = dg(di), di ∈ ∂φ(σ),
and D(i)

t is the first t× t principal submatrix of D(i). Let

H =
∑
i=1

αiQ(i)D(i)
t (Q(i))T , (8.3)

which is SPSD and satisfies tr(H) = 1. Conversely, any SPSD matrix H
satisfying tr(H) = 1 can be always expressed as the form of (8.3).
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8.2 Applications

In this section we present several examples to illustrate the application
of the subdifferential of unitarily invariant norms in solving an opti-
mization problem regularized by a unitarily invariant norm or built on
any unitarily invariant norm loss.

Example 8.1. Given a nonzero matrix A ∈ Rm×n, consider the follow-
ing optimization problem:

min
X∈Rm×n

f(X) , 1
2‖X−A‖2F + τ‖X‖∗, (8.4)

where τ > 0 is a constant. Clearly, the problem is convex in X. This
problem is a steppingstone of matrix completion. Let A = UrΣrVT

r

be a given condensed SVD of A, and define

X̂ = Ur[Σr − τIr]+Vr,

where [Σr−τIr]+ = diag([σ1−τ ]+, . . . , [σr−τ ]+) and [z]+ = max(z, 0).
Now it can be directly checked that

∂f(X̂) = X̂−A + τ∂‖X̂‖.

Assume that the first k singular values σi are greater than τ . Then,

1
r

(A− X̂) = UkVT
k + 1

τ
Uk+1:rdiag(σk+1, . . . , σr)VT

k+1:r,

which belongs to ∂‖X̂‖. In other words, 0 ∈ ∂f(X̂) (see Corollary 8.4).
Thus, X̂ is a minimizer of the optimization problem. It is called the
singular value thresholding (SVT) operator [Cai et al., 2010]. We can
see that the parameter τ controls the rank of the matrix X̂ and the
problem is able to yield a low rank solution to the matrix X. That is,
X̂ is a low rank approximation to the matrix A.

Example 8.2. Given a nonzero matrix A ∈ Rm×n, consider the follow-
ing optimization problem:

min
X∈Rm×n

f(X) , 1
2‖X−A‖2F + τ‖X‖2, (8.5)
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where τ > 0 is a constant. Also, this problem is convex in X. Let A
have the k distinct positive singular values δ1 > δ2 > · · · > δk among
the σi, with respective multiplicities r1, . . . , rk. Thus, the rank of A is
r =

∑k
i=1 ri. Let mt =

∑t
i=1 ri and µt =

∑t
i=1 riδi for t = 1, . . . , k. So

mk = r and µk = tr(Σr) =
∑r
i=1 σi. Assume that τ ≤ µk. We now

consider two cases.
In the first case, assume l ∈ [k− 1] is the smallest integer such that

l∑
i=1

ri(δi − δl+1) = µl − δl+1ml > τ,

and hence, δl ≥ µl−τ
ml

> δl+1. Note that

l+1∑
i=1

ri(δi − δl+2) =
l∑

i=1
ri(δi−δl+1)+

l+1∑
i=1

ri(δl+1−δl+2)

>
l∑

i=1
ri(δi−δl+1) > τ.

This implies that l is identifiable. Denoting δ = µl−τ
ml

, we define Σ̂
by replacing the first ml diagonal elements of Σr by δ, and then set
X̂ = UrΣ̂rVT

r . Now note that
1
τ

(A− X̂) = UmlHVT
ml
,

where H = diag
(
(σ1 − δ)/τ, . . . , (σml − δ)/τ

)
. Clearly, H is PSD and

tr(H) =
∑ml
i=1

σi−δ
τ =

∑l
i=1

rl(δi−δ)
τ = 1. It follows from Corollary 8.5

that 1
τ (A− X̂) ∈ ∂‖X̂‖2. Thus, X̂ is a minimizer.

In the second case, otherwise,
∑k−1
i=1 ri(δi − δk) = µk−1 −mk−1δk ≤

τ ≤ µk. Let δ = µk−τ
mk

such that

0 ≤ δ ≤ µk − µk−1 + δkmk−1
mk

= δk.

Define X̂ = UrδIrVT . Then
1
τ

(A− X̂) = 1
τ

Ur(Σr − δIr)VT
r .

Since 1
τ (Σr−δIr) is PSD and 1

τ tr(Σr−δIr) = 1, we obtain 0 ∈ ∂f(X̂).
This implies that X̂ is a minimizer of the problem.
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As we have seen, the minimizer X̂ has the same rank with A. Thus,
the problem in (8.5) can not give a low-rank solution. However, this
problem makes the singular values of X̂ more well-conditioned because
the top singular values decay to δ. Thus, we call it a singular value
averaging (SVA) operator.

Example 8.3. Given a nonzero matrix A ∈ Rm×n, consider the follow-
ing convex optimization problem:

min
X∈Rm×n

f(X) , ‖X−A‖2 + τ‖X‖∗, (8.6)

where τ > 0 is a constant. In the above model the loss function and
regularization term are respectively defined as the spectral norm and
the nuclear norma, which are mutually dual. Moreover, this model can
be regarded as a parallel version of the Dantzig selector [Candès and
Tao, 2007]. Thus, this model might be potentially interesting.

Let A = UrΣrVT
r be a condensed SVD. Assume that rτ > 1.

Assume there are the k distinct positive singular values δ1 > δ2 >

· · · > δk among the σi, with respective multiplicities r1, . . . , rk. Let
mt =

∑t
i=1 ri for t = 1, . . . , k.

Let l ∈ [k] be the smallest integer such that mlτ ≥ 1 > ml−1τ . De-
fine X̂ = Ur[Σr−δlIr]+VT

r = Uml−1diag(σ1−δl, . . . , σml−1−δl)VT
ml−1 .

Then A− X̂ has the maximum singular value δl with multiplicity ml.
It follows from Corollaries 8.4 and 8.5 that

∂‖X̂‖∗ =
{
Uml−1VT

ml−1+W : WTUml−1 = 0,WVml−1 = 0, ‖W‖2 ≤ 1
}

and

∂‖A− X̂‖2 =
{
−UmlHVT

ml
: H is PSD, tr(H) = 1

}
.

Take W0 = U[ml−1+1:ml]
(1−ml−1τ)

rlτ
IrlVT

[ml−1+1:ml]. Note that
W0Vml−1 = 0, WT

0 Uml−1 = 0, and ‖W0‖2 = (1−ml−1τ)
rlτ

≤ 1
due to ml−1τ + rlτ = mlτ ≥ 1 and ml−1τ < 1. Hence,

τ∂‖X̂‖∗ 3 τ(Uml−1VT
ml−1 + W0) = UmlH0VT

ml
,

where H0 = τ(Iml−1⊕
(1−ml−1τ)

rlτ
Irl). Clearly, H0 is PSD and tr(H0) = 1.

Thus,
−UmlH0VT

ml
∈ ∂‖A− X̂‖2.
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As a result, 0 ∈ ∂‖A− X̂‖2 + τ∂‖X̂‖∗. Consequently, X̂ is a minimizer
of the problem in (8.6). Compared with SVT in the model (8.4) which
uses the tuning parameter τ as the thresholding value, the current
model uses δl as the thresholding value.

We also consider the following convex optimization problem:

min
X∈Rm×n

f(X) , ‖X−A‖∗ + 1
τ
‖X‖2. (8.7)

Clearly, the minimizer of the problem is A−X̂ where X̂ is the minimizer
of the problem (8.6).

Example 8.4. Finally, we consider the following optimization problem:

min
X∈Rn×p

f(X) , |||AX−B|||,

where A ∈ Rm×n and B ∈ Rm×p are two given matrices. This is a novel
matrix low rank approximation problem. We will further discuss this
problem in Theorem 9.1 of Chapter 9. Here we are concerned with the
use of Theorem 8.3 in solving the problem based on unitarily invariant
norm loss functions.

Let A = UrΣrVT
r be a condensed SVD of A, and U−r and V−r be

respective orthonormal complements of Ur and Vr. Now B−AA†B =
U−rUT

−rB. Thus, when taking X̂ = A†B, one has

∂f(X̂) = AT∂|||U−rUT
−rB|||.

Let U0Σ0VT
0 = UT

−rB be a thin SVD of UT
−rB, D be a diagonal

matrix, and φ be a symmetric gauge function associated with the norm
||| · |||. It follows from Theorem 8.3 that

∂|||U−rUT
−rB||| = conv{U−rU0DVT

0 : U0,V0, dg(D) ∈ φ(dg(Σ0))}.

Thus, for any G ∈ ∂|||U−rUT
−rB|||, it holds that ATG = 0. This im-

plies that ∂f(X̂) = {0}. Hence, 0 ∈ ∂f(X̂). This implies that X̂ is a
minimizer of the problem. In other words,

min
X∈Rn×p

|||AX−B||| = |||AA†B−B|||.
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Matrix Low Rank Approximation

Matrix low rank approximation is very important, because it has re-
ceived wide applications in machine learning and data mining. On the
one hand, many machine learning methods involve computing linear
equation systems, matrix decomposition, matrix determinants, matrix
inverses, etc. How to compute them efficiently is challenging in big
data scenarios. Matrix low rank approximation is a potentially pow-
erful approach for addressing computational challenge. On the other
hand, many machine learning tasks can be modeled as matrix low rank
approximation problems such as matrix completion, spectral clustering,
and multi-task learning.

Approximate matrix multiplication is an inverse process of the ma-
trix low rank approximation problem. Recently, many approaches to
approximate matrix multiplication [Drineas et al., 2006a, Sarlos, 2006,
Cohen and Lewis, 1999, Magen and Zouzias, 2011, Kyrillidis et al.,
2014, Kane and Nelson, 2014] have been developed. Meanwhile, they
are used to obtain fast solutions for the `2 regression and SVD prob-
lems [Drineas et al., 2006b, 2011b, Nelson and Nguyên, 2013, Halko
et al., 2011, Clarkson and Woodruff, 2013, Martinsson et al., 2011,
Woolfe et al., 2008]. This makes matrix low rank approximation also

77
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become increasingly popular in the theoretical computer science com-
munity [Sarlos, 2006, Drineas et al., 2006a].

In this chapter we first present some important theoretical results in
matrix low rank approximation. We then discuss approximate matrix
multiplication. In the following chapter we are concerned with large
scale matrix approximation. We will study randomized SVD and CUR
approximation. They can be also cast into the matrix low rank approx-
imation framework.

9.1 Basic Results

Usually, matrix low rank approximation is formulated as a least squares
estimation problem based on the Frobenius norm loss. However, Tropp
[2015] pointed out that Frobenius-norm error bounds are not acceptable
in most cases of practical interest. He even said “Frobenius-norm error
bounds are typically vacuous.” Thus, spectral norm as a loss function
is also employed. In this chapter, we present several basic results, some
of which hold even for every unitarily invariant norm.

Theorem 9.1. Let A ∈ Rm×n and C ∈ Rm×c. Then for any X ∈ Rc×n

and any unitarily invariant norm ||| · |||,

|||A−CC†A||| ≤ |||A−CX|||.

In other words,
C†A = argmin

X∈Rc×n
|||CX−A|||. (9.1)

As we have seen, Theorem 9.1 was discussed in Example 8.4, where
the problem is solved via the subdifferentials of unitarily invariant
norms given in Theorem 8.3. Here, we present an alternative proof.

Proof. Let E1 = A−CC†A, E2 = CC†A−CX, and E = E1 + E2 =
A−CX. Since

ET
1 E2 = AT (I−CC†)C(C†A−X) = AT0(C†A−X) = 0,

we have ETE = ET
1 E1+ET

2 E2, and thus λi(E1) ≤ λi(E). It then follows
that σi(E1) ≤ σi(E), and thereby σ(E1) ≺w σ(E). It then follows from
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Theorems 7.4 and 7.5 that

|||E1||| ≤ |||E|||

for any unitarily invariant norm ||| · |||.

Recall that Problem (9.1) gives an extension to the least squares
problem (4.1) in Section 4.1. Theorem 9.1 shows that there is an iden-
tical solution w.r.t. all unitarily invariant norm errors. The following
theorem shows the solution of a more complicated problem. However,
the theorem holds only for the Frobenius norm loss.

Theorem 9.2. Let A ∈ Rm×n, C ∈ Rm×c, and R ∈ Rr×n. Then for all
X ∈ Rc×r,

‖A−CC†AR†R‖F ≤ ‖A−CXR‖F .

Equivalently, X? = C†AR† minimizes the following problem:

min
X∈Rc×n

‖CXR −A‖2F . (9.2)

Proof. Let E1 = (Im − CC†)A, E2 = CC†A(In − R†R), E3 =
CC†AR†R − CXR, and E = E1 + E2 + E3. Then E1 + E2 =
A − CC†AR†R and E = A − CXR. Since ET

1 E2 = 0, E3ET
2 = 0,

ET
1 E3 = 0, it follows from the matrix Pythagorean theorem that

‖E‖2F = ‖E1‖2F + ‖E2‖2F + ‖E3‖2F = ‖E1 + E2‖2F + ‖E3‖2F .

Thus, ‖E1 + E2‖2F ≤ ‖E‖2F .

Theorem 9.3. [Eckart and Young, 1936, Mirsky, 1960] Given an m×n
real matrix A of rank r (≤ min{m,n}), let A = UΣVT be the full
SVD of A. Define Ak = UkΣkVT

k , where Uk and Vk consist of the first
k columns of U and V respectively, and Σk is the first k × k principal
submatrix of Σ. Then for all m× n real matrices B of rank at most k,

|||A−Ak||| ≤ |||A−B|||

holds for all unitarily invariant norm ||| · |||. In other words,

Ak = argmin
B∈Rm×n,rank(B)≤k

|||A−B|||. (9.3)
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Theorem 9.3 shows that the rank k truncated SVD produces the
best rank k approximation. The theorem was originally proposed by
Eckart and Young [1936] under the setting of the Frobenius norm, and
generalized to any unitarily invariant norms by Mirsky [1960].

Proof. For any m× n real matrix B of rank at most k, we can write it
as B = QC where Q is an m × k column orthonormal matrix and C
is some k × n matrix. Thus,

|||A−B||| = |||A−QC||| ≥ |||A−QQTA||| = |||Q⊥(Q⊥)TA|||,

where Q⊥ (m × (m−k)) is the orthogonal complement of Q. By
Proposition 6.3, we have σi(Q⊥(Q⊥)TA) = σi((Q⊥)TA) ≥ σk+i for
i = 1, . . . , p− k. This implies that

σ(A−Ak) = (σk+i, σp, 0, . . . , 0)T ≺w σ(Q⊥(Q⊥)TA).

Hence, |||A−B||| ≥ |||A−Ak|||.

The above proof procedure also implies that for all m × k column
orthonormal matrices Q,

|||A−UkUT
kA||| ≤ |||A−QQTA|||

holds for every unitarily invariant norm ||| · |||.
When k < r, Ak is called a truncated SVD of A and the closest

rank-k approximation of A. Note that when the Frobenius norm is
used, Ak is the unique minimizer of the problem in (9.3). However,
when other unitarily invariant norms are used, the case does not always
hold. For example, let us take the spectral norm. Clearly, if

Σ̃ = diag(σ1 − ωσk+1, σ2 − ωσk+1, . . . , σk − ωσk+1, 0, . . . , 0)

for any ω ∈ [0, 1], then UΣ̃VT is also a minimizer of the corresponding
problem.

Theorem 9.4. Given a matrix A ∈ Rm×n and a column orthonormal
matrix Q ∈ Rm×p, let Bk be the rank-k truncated SVD of QTA for
1 ≤ k ≤ p. Then Bk is an optimal solution of the following problem:

min
B∈Rl×n,rank(B)≤k

‖A−QB‖2F = ‖A−QBk‖2F . (9.4)
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Proof. Note that (A−QQTA)T (QB−QQTA) = 0, so

‖A−QB‖2F = ‖A−QQTA‖2F + ‖QB−QQTA|2F
= ‖A−QQTA‖2F + ‖B−QTA|2F .

The result of the theorem follows from Theorem 9.3.

Theorem 9.4 is a variant of Theorem 9.3 and of Theorem 9.1. Un-
fortunately, Bk might not be the solution to the above problem in every
unitarily invariant norm, even in the spectral norm error. The reason
is that the matrix Pythagorean identity hods only for the Frobenius
norm (see Theorem 7.11).

However, Tropp [2015] pointed out that Frobenius-norm error
bounds are not acceptable in most cases of practical interest. He
even said “Frobenius-norm error bounds are typically vacuous” [Tropp,
2015]. The following theorem was proposed by Gu [2015], which relates
the approximation error in the Frobenius norm to that in the spectral
norm.

Theorem 9.5. [Gu, 2015] Given any matrix A ∈ Rm×n, let p =
min{m,n} and B be a matrix with rank at most k such that

‖A−B‖F ≤

√√√√η2 +
p∑

j=k+1
σ2
j (A)

for some η ≥ 0. Then we must have
√∑k

j=1(σj(A)− σj(B))2 ≤ η and

‖A−B‖2 ≤
√
η2 + σ2

k+1(A).

Proof. By Proposition 6.3-(2), we have

σi+k(A) ≤ σi(A−B) + σk+1(B) = σi(A−B) for i ∈ [p− k]

due to rank(B) ≤ k. It then follows that

‖A−B‖2F =
p∑
i=1

σ2
i (A−B) ≥ σ2

1(A−B) +
p−k∑
i=2

σ2
i (A−B)

≥ σ2
1(A−B) +

p−k∑
i=2

σ2
i+k(A).
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We thus obtain

‖A−B‖22 = σ2
1(A−B) ≤ η2 + σ2

k+1(A).

Additionally, it follows from Theorem 6.5 that

k∑
i=1

(σi(A)− σi(B))2 +
p∑

j=k+1
σ2
j (B) ≤ ‖A−B‖2F ≤ η2 +

p∑
j=k+1

σ2
j (A),

which leads to the result.

Let us apply Theorem 9.5 to Theorem 9.4 to establish a spectral
norm error bound. It follows from Theorem 9.4 that

‖A−Ak‖F ≤ ‖A−QBk‖F ≤ ‖A−QQTAk‖F .

Consider that

‖A−QQTAk‖2F = ‖A−Ak + Ak −QQTAk‖2F
= ‖(Im −QQT )Ak‖2F + ‖A−Ak‖2F

due to (A−Ak)AT
k (Im −QQT ) = 0. Thus,

‖A−QBk‖2F ≤ ‖(Im −QQT )Ak‖2F +
n∑

i=k+1
σ2
i (A).

By Theorem 9.5, we have that

‖A−QBk‖22 ≤ ‖(Im −QQT )Ak‖2F + σ2
k+1(A),

which can give an error bound in the spectral norm.

9.2 Approximate Matrix Multiplication

Given matrices A ∈ Rn×d and B ∈ Rn×p, it is well known that the com-
plexity of computing ATB is O(dnp). Approximate matrix multiplica-
tion aims to obtain a matrix C ∈ Rd×p with o(dnp) time complexity
such that for a small ε > 0,

‖ATB−C‖ ≤ ε‖A‖‖B‖.
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This shows that approximate matrix multiplication can be viewed as
an inverse process of the conventional matrix low rank approximation
problem.

Approximate matrix multiplication is a potentially important ap-
proach for fast matrix multiplication [Drineas et al., 2006a, Clark-
son and Woodruff, 2009, Cohen and Lewis, 1999, Kane and Nelson,
2014, Drineas et al., 2011b, Nelson and Nguyên, 2013, Clarkson and
Woodruff, 2013]. It is the foundation of approximate least square meth-
ods and matrix low rank approximation methods [Sarlos, 2006, Halko
et al., 2011, Kyrillidis et al., 2014, Martinsson et al., 2011, Woolfe
et al., 2008, Magdon-Ismail, 2011, Magen and Zouzias, 2011, Cohen
and Lewis, 1999, Kane and Nelson, 2014, Drineas et al., 2011b, Nel-
son and Nguyên, 2013, Clarkson and Woodruff, 2013]. Moreover, it can
be also used in large scalable k-means clustering [Cohen et al., 2014],
approximate leverage scores [Drineas et al., 2011a], etc.

Most of work for matrix approximations is based on error bounds
w.r.t. the Frobenius norm [Drineas et al., 2006a, Sarlos, 2006, Cohen
and Lewis, 1999, Kane and Nelson, 2014, Drineas et al., 2011b, Nelson
and Nguyên, 2013, Clarkson and Woodruff, 2013]. In contrast, there is
a few work based on spectral-norm error bounds [Halko et al., 2011,
Kyrillidis et al., 2014, Martinsson et al., 2011, Woolfe et al., 2008,
Magdon-Ismail, 2011, Magen and Zouzias, 2011]. As we have mentioned
earlier, spectral-norm error bounds are also of great interest.

In approximate matrix multiplication, oblivious subspace embed-
ding matrix is a key ingredient. For example, gaussian matrix and ran-
dom sign matrix are oblivious matrix. However, leverage score sketching
matrix depends on data matrix, hence, it is not an oblivious subspace
embedding matrix.

Definition 9.1. [Woodruff, 2014b] Given ε > 0 and δ > 0, let Π be a
distribution on l× n matrices, where l relies on n, d, ε and δ. Suppose
that with probability at lest 1 − δ, for any fixed n × d matrix A, a
matrix S drawn from distribution Π is a (1+ε) `2-subspace embedding
for A, that is, for all x ∈ Rd, ‖SAx‖22 = (1± ε)‖Ax‖22 with probability
1− δ. Then we call Π an (ε, δ)-oblivious `2-subspace embedding,

Recently, Cohen et al. [2015] proved optimal approximate ma-
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trix multiplication in terms of stable rank by using subspace embed-
ding [Batson et al., 2014].

Theorem 9.6. [Cohen et al., 2015] Given ε, δ ∈ (0, 1/2), let A and
B be two conforming matrices, and Π be a (ε, δ) subspace embedding
for the 2r̃-dimensional subspace, where r̃ is the maximum of the stable
ranks of A and B. Then,

||(ΠA)T (ΠB)−ATB|| ≤ ε||A||||B||

holds with at least 1− δ.

To analyze approximate matrix multiplication with the Frobenius
error, Kane and Nelson [2014] introduced the JL-moment property.

Definition 9.2. A distribution D over Rn×d has the (ε, δ, `)-JL moment
property if for all x ∈ Rd with ‖x‖2 = 1,

EΠ∼D
∣∣∣‖Πx‖22 − 1

∣∣∣` ≤ ε` · δ
Based on the JL-moment property, these is an approximate matrix

multiplication method with the Frobenius error.

Theorem 9.7. Given ε, δ ∈ (0, 1/2), let A and B be two conforming
matrices, and Π be a matrix satisfying the (ε, δ, `)-JL moment property
for some ` ≥ 2. Then,

||(ΠA)T (ΠB)−ATB||F ≤ ε||A||F ||B||F

holds with at least 1− δ.

Note that both the subspace embedding property and the JL mo-
ment property have close relationships. More specifically, they can be
converted into each other [Kane and Nelson, 2014].

There are other methods, which do not use subspace embedding
matrices, in the literature. Magen and Zouzias [2011] gave a method
based on columns selection. Bhojanapalli et al. [2015] proposed a new
method with sampling and alternating minimization to directly com-
pute a low-rank approximation to the product of two given matrices.

For low-rank matrix approximation in the streaming model, Clark-
son and Woodruff [2009] gave the near-optimal space bounds by the
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sketches. Liberty [2013] came up with a deterministic streaming algo-
rithm, with an improved analysis studied by Ghashami and Phillips
[2014] and space lower bound obtained by Woodruff [2014a].



10
Large-Scale Matrix Approximation

In this chapter we discuss fast computational methods of the SVD, ker-
nel methods, and CUR decomposition via randomized approximation.
The goal is to make the matrix factorizations fill the use on large scale
data matrices.

It is notoriously difficult to compute SVD because the exact SVD
of an m × n matrix takes O(mnmin{m,n}) time. Fortunately, many
machine learning methods such as latent semantic indexing [Deerwester
et al., 1990], spectral clustering [Shi and Malik, 2000], manifold learning
[Tenenbaum et al., 2000, Belkin and Niyogi, 2003] are interested in only
the top singular value triples. The Krylov subspace method computes
the top k singular value triples in Õ(mnk) time [Saad, 2011, Musco
and Musco, 2015], where the Õ notation hides the logarithm factors
and the data dependent condition number. If a low precision solution
suffices, the time complexity can be even lower. Here we will make
main attention on randomized approximate algorithms that demon-
strate high scalability. Randomized algorithms are a feasible approach
for large scale machine learning models [Rokhlin et al., 2009, Mahoney,
2011, Tu et al., 2014]. In particular, we will consider randomized SVD
methods [Halko et al., 2011].

86
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In contrast to the randomized SVD which is based on random pro-
jection, the CUR approximation mainly employs column selection. Col-
umn selection has been extensively studied in the theoretical computer
science (TCS) and numerical linear algebra (NLA) communities. The
work in TCS mainly focuses on choosing good columns by randomized
algorithms with provable error bounds [Frieze et al., 2004, Deshpande
et al., 2006, Drineas et al., 2008, Deshpande and Rademacher, 2010,
Boutsidis et al., 2014, Guruswami and Sinop, 2012]. The focus in NLA is
then on deterministic algorithms, especially the rank-revealing QR fac-
torizations, that select columns by pivoting rules [Foster, 1986, Chan,
1987, Stewart, 1999, Bischof and Hansen, 1991, Hong and Pan, 1992,
Chandrasekaran and Ipsen, 1994, Gu and Eisenstat, 1996, Berry et al.,
2005].

10.1 Randomized SVD

All the randomized SVD algorithms essentially have the same idea:
first draw a random projection matrix Ω ∈ Rn×c, then form the sketch
C = AΩ ∈ Rm×c and compute its orthonormal bases Q ∈ Rm×c, and
finally compute a rank k matrix X ∈ Rc×n such that ‖A − QX‖2ξ is
small compared to ‖A−Ak‖2ξ . Here ‖ · ‖ξ denotes either the Frobenius
norm or the spectral norm.

The following lemma is the foundation in theoretical analysis of the
randomized SVD [Halko et al., 2011, Gu, 2015].

Lemma 10.1. Let A ∈ Rm×n be a given matrix, and Z ∈ Rn×k

be column orthonormal. Let Ω ∈ Rn×c be any matrix such that
rank(ZTΩ) = rank(Z) = k, and define C = AΩ ∈ Rm×c . Then

‖A−Πξ
C,k(A)‖2ξ ≤ ‖E‖2ξ + ‖EΩ(ZTΩ)†‖2ξ ,

where E = A−AZZT , and Πξ
C,k(A) ∈ Rm×n denotes the best approx-

imation to A within the column space of C that has rank at most k
w.r.t. the norm ‖ · ‖ξ loss.

Proof. In terms of definition of Πξ
C,k(A), we have

‖A−Πξ
C,k(A)‖2ξ ≤ ‖A−X‖2ξ
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for all matrices X ∈ Rm×n of rank at most k in the column space of C.
Obviously, C(ZTΩ)†ZT is such a matrix. Thus,

‖A−Πξ
C,k(A)‖2ξ ≤ ‖A−C(ZTΩ)†ZT ‖2ξ

= ‖A−AZZT + AZZT −C(ZTΩ)†ZT ‖2ξ
= ‖E + (AZZT −A)Ω(ZTΩ)†ZT ‖2ξ
= ‖E + EΩ(ZTΩ)†ZT ‖2ξ .

Here we use the fact that ZTΩ(ZTΩ)† = Ik because rank(ZTΩ) = k.
Consider that

EΩ(ZTΩ)†ZTET = EΩ(ZTΩ)†ZT (AT − ZZTAT ) = 0.

The theorem follows from Theorem 7.11.

Consider the rank-k truncated SVD Ak = UkΣkVT
k . Then we can

write A as
A = AVkVT

k + (A−Ak).
Let Z = Vk and E = A − Ak in Lemma 10.1. Then the following
theorem is an immediate corollary of Lemma 10.1.

Theorem 10.2. Let A = UΣVT be the full SVD of A ∈ Rm×n, fix k ≥
0, and let Ak = UkΣkVT

k be the best at most rank k approximation
of A. Choose a test matrix Ω and construct the sketch C = AΩ.
Partition Σ =

[
Σk 0
0 Σ−k

]
and V = [Vk,V−k]. Define Ω1 = VT

kΩ and

Ω2 = VT
−kΩ. Assume that Ω1 has full row rank. Then

‖(Im −CC†)A‖2ξ ≤ ‖A−Πξ
C,k(A)‖2ξ ≤ ‖Σ−k‖2ξ + ‖Σ−kΩ2Ω†1‖2ξ .

In Lemma 10.1 and Theorem 10.2, the condition rank(VT
kΩ) =

rank(Vk) = k is essential for an effective randomized SVD algorithm.
An idealized case for meeting this condition is that range(Vk) ⊂
range(Ω). In this case, the randomized SVD degenerates an exact trun-
cated SVD procedure. Thus, the above condition aims to relax this ide-
alized case. Moreover, the key for an effective randomized SVD is to se-
lect a test matrix Ω such that the condition rank(VT

kΩ) = rank(Vk) =
k holds as much as possible. Lemma 10.1 and Theorem 10.2 are also
fundamental in random column selection [Boutsidis et al., 2014].
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10.1.1 Randomized SVD: Frobenius Norm Bounds

In this subsection, we describe two randomized SVD algorithms which
have (1 + ε) relative-error bound.

Random Projection. In order to reduce computational expenses,
randomized algorithms [Frieze et al., 2004, Vempala, 2000] have been
introduced to truncated SVD and low-rank approximation. The John-
son & Lindenstrauss (JL) transform [Johnson and Lindenstrauss, 1984,
Dasgupta and Gupta, 2003] is known to keep isometry in expectation or
with high probability. Halko et al. [2011], Boutsidis et al. [2014] used the
JL transform for sketching and showed relative-error bounds. However,
the Gaussian test matrix is dense and cannot efficiently apply to matri-
ces. Several improvements have been proposed to make the sketching
matrix sparser; see the review [Woodruff, 2014b] for the complete list of
the literature. In particular, the count sketch [Clarkson and Woodruff,
2013] applies to A in only O(nnz(A)) time and exhibits very similar
properties as the JL transform. Specifically, Woodruff [2014b] showed
that an m × O(k/ε) sketch C = AΩ can be obtained in O(nnz(A))
time and

min
rank(X)≤k

∥∥A−QX
∥∥2
F
≤ (1 + ε) ‖A−Ak‖2F (10.1)

holds with high probability.
The Prototype Algorithm. Halko et al. [2011] proposed to di-

rectly solve the left-hand side of (10.1), which has closed-form solution
X? = (QTA)k. This leads to the prototype algorithm shown in Algo-
rithm 1. The optimality of X? is given in Theorem 9.4.

The prototype algorithm is not time efficient because the matrix
product QTA costs O(mnc) time, which is not lower than the exact
solutions. Nevertheless, the prototype algorithm is still useful in large-
scale applications because it is pass-efficient—it goes only two passes
through A.

Faster Randomized SVD. The bottleneck of the prototype al-
gorithm is the matrix product in computing X?. Notice that (9.4) is
a strongly over-determined system, so it can be approximately solved
by once more random projection. Let P = P1P2 ∈ Rm×p be another
random projection matrix, where P1 is a count sketch and P2 is a JL
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Algorithm 1 Randomized SVD: The Prototype Algorithm.
1: Input: a matrix A ∈ Rm×n with m ≥ n, target rank k, the size of

sketch c where 0 < k ≤ c < n;
2: Draw a sketching matrix Ω ∈ Rn×c, e.g. a Gaussian test matrix or

a count sketch
3: Compute C = AΩ ∈ Rm×c and its orthonormal bases Q ∈ Rm×c;
4: Compute the rank k truncated SVD: QTA ≈ ŪkΣ̃kṼT

k ;
5: return Ũk = QŪk, Σ̃k, Ṽk—an approximate rank-k truncated

SVD of A.

transform matrix. Then we solve

X̃ = min
rank(X)≤k

‖PT (A−QX)‖2F

instead of (9.4), and X̃ has closed-form solution

X̃ = R̃†(Q̃TPTA)k,

where Q̃R̃ be the economy size QR decomposition of (PTQ) ∈ Rp×c.
Finally, the rank k matrix QX̃ is the obtained approximation to A,
and its SVD can be very efficiently computed. Clarkson and Woodruff
[2013], Woodruff [2014b] showed that∥∥A−QR̃†(Q̃TPTA)k

∥∥2
F
≤ (1 + ε) ‖A−Ak‖2F

for a large enough p, and the overall time cost is O(nnz(A) + (m +
n)poly(k/ε)).

10.1.2 Randomized SVD: Spectral Norm Bounds

The previous section shows that the approximate truncated SVD can
be computed highly efficiently, with the (1+ε) Frobenius relative-error
guaranteed. The Frobenius norm bound tells that the total elementwise
distance is small, but it does not inform us the closeness of their singular
vectors. Therefore, we need spectral norm bounds or even stronger
principal angle bounds; here we only consider the former. We seek to
find an m× k column orthogonal matrix Ũ such that∥∥A− ŨŨTA

∥∥2
2 ≤ η‖A−Ak‖22,
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where η will be specified later.
The Prototype Algorithm. Unlike the Frobenius norm bound,

the prototype algorithm is unlikely to attain a constant factor bound
(i.e., η is independent of m, n), letting alone the 1 + ε bound. It is
because the lower bounds [Witten and Candès, 2013, Boutsidis et al.,
2014] showed that if Ω ∈ Rn×c in Algorithm 1 is the Gaussian test ma-
trix or any column selection matrix, the order of η must be at least n/c.
We apply Gu’s theorem [Gu, 2015] (Theorem 9.5) to obtain an O(n)-
factor spectral norm bound, and then introduce iterative algorithms
with the (1+ε) spectral norm bound.

Let Ũk, Σ̃k, and Ṽk be the outputs of Algorithm 1. We have that∥∥A− ŨkŨT
kA

∥∥2
F
≤

∥∥A− ŨkΣ̃kṼT
k

∥∥2
F

=
∥∥A−QX?

∥∥2
F
≤ (1 + ε) ‖A−Ak‖2F ,

where the first inequality follows from Theorem 9.1, the equality fol-
lows from the definitions, and the second inequality follows from (10.1)
provided that c = O(k/ε) and Ω is the Gaussian test matrix or the
count sketch. We let ε = 1 and c = O(k) and apply Theorem 9.5 to
obtain ∥∥A− ŨkŨT

kA
∥∥2

2 ≤ ‖A−Ak‖22 + ‖A−Ak‖2F
≤ (n− k + 1)‖A−Ak‖22. (10.2)

Here the second inequality follows from that ‖A−Ak‖2F =
∑n
i=k+1 σ

2
i ≤

(n − k)σ2
k+1 = (n − k)‖A − Ak‖22. To this end, we have shown that

the prototype algorithm 1 satisfies O(n)-factor spectral norm bound.
However, the result itself has little meaning.

The Simultaneous Power Iteration can be used to refine the
sketch [Halko et al., 2011, Gu, 2015]. The algorithm is described in
Algorithm 2 and analyzed in the following. Let Ω ∈ Rn×c be a Gaussian
test matrix or count sketch and B = (AAT )tA. Let us take B instead of
A as the input of the prototype algorithm 1 and obtain the approximate
left singular vectors Ũk. It is easy to verify that Ũk is the same to the
output of Algorithm 2. We will show that when t = O( logn

ε ),∥∥A− ŨkŨT
kA

∥∥2
2 ≤ (1 + ε)‖A−Ak‖22. (10.3)

To show this result, we need the lemma of Halko et al. [2011].
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Algorithm 2 Subspace Iteration Methods.
1: Input: any matrix A ∈ Rm×n, the target rank k, the size of sketch
c where 0 < k ≤ c < n;

2: Generate an n × c Gaussian test matrix Ω and perform sketching
C(0) = AΩ;

3: for i = 1 to t do
4: Optional: orthogonalize C(i−1);
5: Compute C(i) = AATC(i−1);
6: end for
7: The Power Method: orthonalize C(t) to obtain Q ∈ Rm×c;
8: The Krylov Subspace Method: orthonalize K =

[C(0), · · · ,C(t)] to obtain Q ∈ Rm×(t+1)c;
9: Compute the rank k truncated SVD: QTA ≈ ŪkΣ̃kṼT

k ;
10: return Ũk = QŪk, Σ̃k, Ṽk—an approximate rank-k truncated

SVD of A.

Lemma 10.3 (Halko, Martinsson, & Tropp). Let A be any matrix and
U have orthonormal columns. Then for any positive integer t,∥∥(I−UUT )A

∥∥
2 ≤

∥∥(I−UUT )(AAT )tA
∥∥1/(2t+1)

2 .

By Lemma 10.3, we have that∥∥(I− ŨkŨT
k )A

∥∥2
2 ≤

∥∥(I− ŨkŨT
k )B

∥∥2/(2t+1)
2

≤ (n− k + 1)1/(2t+1)σ
2/(2t+1)
k+1 (B)

= (1 + ε)σ2
k+1(A).

Here the second inequality follows from (10.2) and the definitions of
B and Ũk, and we show the equality in the following. Let 2t + 1 =
log(n−k+1)

0.5ε . We have that 1
2t+1 log(n− k+ 1) = 0.5ε ≤ log(1 + ε), where

the inequality holds for all for all ε ∈ [0, 1]. Taking the exponential of
both sides, we have (n − k + 1)1/(2t+1) ≤ 1 + ε. Finally, (10.3) follows
from that σ2

k+1(A) = ‖A−Ak‖22.
The Krylov Subspace Method. From Algorithm 2 we can see

that the power iteration repeats t times, but only the output of the last
iteration C(t) is used. In fact, the intermediate results C(0), · · · ,C(t) are
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also useful. The matrix K = [C(0), · · · ,C(t)] ∈ Rm×(t+1)c is well known
as the Krylov matrix, and range(K) is called the Krylov subspace.
We show the Krylov subspace method in Algorithm 2, which differs
from simultaneous power iteration in only one line. It turns out that
the Krylov subspace method converges much faster than the power
iteration [Saad, 2011]. Very recently, Musco and Musco [2015] showed
that with t = logn√

ε
power iteration, the 1+ε spectral norm bound (10.3)

holds with high probability. This result is evidently stronger than the
simultaneous power iteration.

It is worth mentioning that the Krylov subspace method described
in Algorithm 2 is a simplified version, and it may be instable when
t is large. This is because the columns of C(0), · · · ,C(t) tend to be
linearly dependent as t grows. In practice, re-orthogonalization or par-
tial re-orthogonalization are employed to prevent the instability from
happening [Saad, 2011].

10.2 Kernel Approximation

Kernel methods are important tools in machine learning, computer vi-
sion, and data mining [Schölkopf and Smola, 2002, Shawe-Taylor and
Cristianini, 2004, Vapnik, 1998, Rasmussen and Williams, 2006]. For
example, kernel ridge regression (KRR), Gaussian processes, kernel
support vector machine (KSVM), spectral clustering, and kernel prin-
cipal component analysis (KPCA) are classical nonlinear models for
regression, classification, clustering, and dimensionality regression. Un-
fortunately, the lack of scalability has always been the major drawback
of kernel methods. The three steps of most kernel methods—forming
the kernel matrix, training, generalization—can all be prohibitive in
big-data applications.

Specifically, suppose we are given n training data and m test data,
all of d dimension. Firstly, it takes O(n2d) time to form an n × n

kernel matrix K, e.g., the Gaussian RBF kernel matrix. Secondly, the
training requires either SVD or matrix inversion of the kernel matrix.
For example, spectral clustering, KPCA, Isomap [Tenenbaum et al.,
2000], and Laplacian eigenmaps [Belkin and Niyogi, 2003] compute the
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top k singular vectors of the (normalized) kernel matrix, where k is the
number of classes or the target dimensionality. This costs O(n2k) time
and O(n3) memory. Thirdly, to generalize the trained model to the test
data, kernel methods such as KRR, KSVM, KPCA cost O(nmd) time
to form an n × m cross kernel matrix between the training and test
data. If m is as large as n, generalization is as challenging as training.

Low rank approximation is the most popular approach to scal-
able kernel approximation. If we have the low rank approximation
K ≈ CXCT , then the approximate eigenvalue decomposition can be
immediately obtained by

K ≈ CXCT = UC (ΣCVT
CXVCΣC)︸ ︷︷ ︸

=Z

UT
C = (UCUZ)ΛZ(UCUZ)T .

Here C = UCΣCVT
C is the SVD and Z = UZΛZUT

Z is the spectral de-
composition. Since the tall-and-skinny matrix UCUZ has orthonormal
columns and the diagonal entries of ΛZ are in the descending order, the
leftmost columns of UCUZ are approximately the top singular vectors
of K. This approach only costs O(nc2) time, where c is the number of
columns of C. Our objective is thereby to find such a low rank approx-
imation.

Difference from Randomized SVD. Why cannot we directly
use the randomized SVD to approximate the kernel matrix? The ran-
domized SVD assumes that the matrix is fully observed; unfortunately,
this is not true for kernel methods. When the number of data samples
is million scale, even forming the kernel matrix is impossible. There-
fore, the primary objective of kernel approximation is to avoid forming
the whole kernel matrix. The existing random projection methods all
require the full observation of the matrix, so random projection is not
a feasible option. We must use column selection in the kernel approxi-
mation problem.

The Prototype Algorithm. Let S be an n× c sketching matrix
and let C = KS. It remains to find the c × c intersection matrix X.
The most intuitive approach is to minimize the approximation error by

X? = argmin
X

∥∥K−CXCT
∥∥2
F

= C†K(C†)T , (10.4)
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where the second equality follows from Theorem 9.2. This method was
proposed by Halko et al. [2011] for approximating symmetric matrix.
Wang et al. [2014a] showed that by randomly sampling O(k/ε) columns
of K to form C by a certain algorithm, the approximation is high
accurate: ∥∥K−CX?CT

∥∥2
F
≤ (1 + ε)

∥∥K−Kk

∥∥2
F
.

This upper bound matches the lower bound c ≥ 2k/ε up to a constant
factor [Wang et al., 2014a]. Unfortunately, the prototype algorithm has
two obvious drawbacks. Firstly, to compute the intersection matrix X?,
every entry of K must be known. As is discussed, it takes O(n2d) time
to form the kernel matrix K. Secondly, the matrix multiplication C†K
costs O(n2c) time. In sum, the prototype algorithm costs O(n2c +
n2d) time. Although it is substantially faster than the exact solution,
the prototype algorithm has the same time complexity as the exact
solution.

Faster SPSD Matrix Sketching. Since C = KS has much more
rows than columns, the optimization problem (10.4) is strongly over-
determined. Wang et al. [2015b] proposed to use sketching to approxi-
mately solve (10.4). Specifically, let P be a certain n×p column selection
matrix with p ≥ c and compute

X̃ = argmin
X

∥∥PT (K−CXCT )P
∥∥2
F

= (PTC)†(PTKP)(CTP)†.

In this way, we need only nc+p2 entries of K to form the approximation
K ≈ CX̃CT . The intersection matrix X̃ can be computed in O(ncd+
p2d+ p2c) time, given S and n data points of d dimension. Wang et al.
[2015b] devised an algorithm that sets p =

√
nc/
√
ε and very efficiently

forms the column selection matrix P; and the following error bound
holds with high probability:∥∥K−CX̃CT

∥∥2
F
≤ (1 + ε) min

X

∥∥K−CXCT
∥∥2
F
.

By this choice of p, the overall time cost is linear in n.
Motivated by the matrix ridge approximation of Zhang [2014],

Wang et al. [2014b] proposed a spectral shifting kernel approxima-
tion method. When the spectrum of K decays slowly, the shifting term
helps to improve the approximation accuracy and numerical stability.
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Wang et al. [2014a] also showed that the spectral shifting approach
can be used to improve other kernel approximation models such as the
memory efficient kernel approximation (MEKA) model [Si et al., 2014].

The Nyström Method is the most popular kernel approximation
approach. It is named after its inventor Nyström [1930] and gained
its popularity in the machine learning society after its application in
Gaussian procession regression [Williams and Seeger, 2001]. Let S be
a column selection matrix, C = KS, and W = STKS. The Nyström
method approximates K by CW†CT . In fact, the Nyström method is
a special case of the faster SPSD matrix sketching where P and S are
equal. This also indicates that the Nyström method is an approximate
solution to (10.4). Gittens and Mahoney [2013] offered comprehensive
error analysis of the Nyström method. The Nyström method has been
applied to solve million scale kernel methods [Talwalkar et al., 2013].
But unlike the faster SPSD matrix sketching, the Nyström method
cannot generate high quality approximation. The lower bound [Wang
and Zhang, 2013] indicates that the Nyström method cannot attain
(1+ε) relative-error bound unless it is willing to spend Ω(n2k/ε) time.

To this end, we have shown how to efficiently approximate any
kernel matrix and use the obtained low rank approximation to speed
up training. We will introduce efficient generalization using the CUR
matrix decomposition in the next section.

10.3 The CUR Approximation

Let A by any m×n matrix. The CUR matrix decomposition is formed
by selecting c columns of A to form C ∈ Rm×c, r rows to form
R ∈ Rr×n, and computing an intersection matrix U ∈ Rc×r such that
CUR ≈ A. In this section, we first discussion the motivations and
then describe algorithms and error analyses.

Motivations. Firstly, let us continue the generalization problem of
kernel methods which remains unsolved in the previous section. Sup-
pose we are given n training data andm test data, all of d dimension. To
generalize the trained model to the test data, supervised kernel meth-
ods such as Gaussian processes and KRR require evaluating the kernel
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function of every train and test data pair—that is to form an m × n
cross kernel matrix K∗—which costs O(mnd) time. By the fast CUR al-
gorithm described later in this section, the approximation K∗ ≈ CUR
can be obtained in time linear in d(m+n). With such a decomposition
at hand, the matrix product K∗M ≈ CURM can be computed in
O(nrk+mck) time. In this way, the overall time cost of generalization
is linear in m+ n.

Secondly, CUR forms a compressed representation of the data ma-
trix, as well as the truncated SVD, and it can be very efficiently con-
verted to the SVD-like form:

A ≈ CUR = UC ΣCVT
CUURΣR︸ ︷︷ ︸

=B

VT
R = (UCUB)ΣB(VRVB)T .

Here C = UCΣCVT
C , R = URΣRVT

R, B = UBΣBVR are the SVD.
Since CUR is formed by sampling columns and rows, it preserves the
sparsity and nonnegativity of the original data matrix. The sparsity
makes CUR cheaper to store than SVD, and the nonnegativity makes
CUR a nonnegative matrix factorization.

Thirdly, CUR consists of the actual columns and rows, and thus it
enables human to to understand and interpret the data. In compari-
son, the basis vectors of SVD has little concrete meaning. An exam-
ple of Drineas et al. [2008] and Mahoney and Drineas [2009] has well
shown this viewpoint; that is, the vector [(1/2)age − (1/

√
2)height +

(1/2)income], the sum of the significant uncorrelated features from a
data set of people’s features, is not particularly informative. Therefore,
it is of great interest to represent a data matrix in terms of a small
number of actual columns and/or actual rows of the matrix.

Column Selection. Several different column selection strategies
have been devised, among which the leverage score sampling [Drineas
et al., 2008] and the adaptive sampling [Wang and Zhang, 2013, Bout-
sidis and Woodruff, 2014] attain relative error bounds. In particular,
Boutsidis and Woodruff [2014] showed that with c = O(k/ε) columns
and r = O(k/ε) rows selected by adaptive sampling to form C and R,

min
X
‖A−CXR‖2F ≤ (1 + ε)‖A−Ak‖2F

holds in expectation. A further refinement was developed by Woodruff
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[2014b]. We will not go to the details of the leverage score sampling
or adaptive sampling. The users only need to know that such algo-
rithms randomly sample columns/rows according to some non-uniform
distributions. Unfortunately, it requires observing the whole matrix A
to compute such non-uniform distributions, thus such column selection
algorithms cannot be applied to speed up computation. It remains an
open problem whether there is a relative-error sampling algorithm that
needs not observing the whole of A. In practice, the users can simply
sample columns/rows uniformly without replacement, which usually
has acceptable empirical performance.

The Intersection Matrix.With the selected columns C and rows
R at hand, we can simply compute the intersection matrix by

U? = argmin
U

∥∥A−CUR
∥∥2
F

= C†AR†. (10.5)

Here the second equality follows from Theorem 9.2. This approach has
been used by Stewart [1999], Wang and Zhang [2013], Boutsidis and
Woodruff [2014]. This approach is very similar to the prototype SPSD
matrix approximation method in the previous section, and it costs at
least O(mn ·min{c, r}) time and requires observing every entry of A.
Apparently, it cannot help speed up matrix computation.

Wang et al. [2015a] proposed a more practical CUR decomposition
method which solves (10.5) approximately. The method first draws two
column selection matrices PC ∈ Rm×pc and PR ∈ Rn×pr (pc, pr ≥
c, r), which costs O(mc2 +nr2) time. It then computes the intersection
matrix by

Ũ = argmin
U

∥∥PT
C(A−CUR)PR

∥∥2
F

= (PT
CC)†(PT

CAPR)(RPR)†.

This method needs observing only pc× pr entries of A, and the overall
time cost is O(pcpr ·min{c, r}+mc2 + nr2). When

pc ≥ O
(
c
√

min{m,n}/ε
)

and pr ≥ O
(
r
√

min{m,n}/ε
)
,

the following inequality holds with high probability:∥∥A−CŨR
∥∥2
F
≤ (1 + ε) min

U

∥∥A−CUR
∥∥2
F
.

In sum, a high quality CUR decomposition can be computed in time
linear in min{m,n}.



Acknowledgements

I would like to thank my graduate students Cheng Chen, Luo Luo,
Shusen Wang, Haishan Ye, and Qiaomin Ye. Specifically, Cheng Chen,
Luo Luo and Qiaomin Ye helped to proofread the whole manuscript.
Haishan Ye helped to revise Chapter 9.2, and Shusen Wang helped to
revise Chapter 10. I would also like to thank other students who took
my course “ Matrix Methods in Massive Data Analysis” in the summer
term 2015. They helped to improve the lecture notes, which provide
the main materials for this tutorial.

99



References

Raja Hafiz Affandi, Alex Kulesza, Emily B. Fox, and Ben Taskar. Nyström ap-
proximation for large-scale determinantal processes. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2013.

S. Akaho. A kernel method for canonical correlation analysis. In International
Meeting of Psychometric Society, 2001.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68:337–404, 1950.

Yossi Azar, Amos Fiat, Anna Karlin, Frank McSherry, and Jared Saia. Spec-
tral analysis of data. In Proceedings of the thirty-third annual ACM sym-
posium on Theory of computing, pages 619–626. ACM, 2001.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal
of Machine Learning Research, 3:1–48, 2002.

J. Batson, D. Spielman, and N. Srivastave. Twice-Ramanujan sparsifiers.
SIAM Review, 56(2):315–334, 2014.

G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel
approach. Neural Computation, 12:2385–2404, 2000.

P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. Fisherfaces:
Recognition using class specific linear projection. IEEE Trans. PAMI, 19
(7):711–720, 1997.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–1396,
2003.

100



References 101

A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Appli-
cations. Second Edition. Springer, 2003.

M. W. Berry, S. A. Pulatova, and G. W. Stewart. Algorithm 844: computing
sparse reduced-rank approximations to sparse matrices. ACM Transactions
on Mathematical Software, 31(2):252–269, 2005.

Rajendra Bhatia. Matrix Analysis. Springer, 1997.
Srinadh Bhojanapalli, Prateek Jain, and Sujay Sanghavi. Tighter low-rank

approximation via sampling the leveraged element. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 902–920. SIAM, 2015.

J. Bien, Y. Xu, and M. W. Mahoney. CUR from a sparse optimization view-
point. In Advances in Neural Information Processing Systems (NIPS), 2010.

C. H. Bischof and P. C. Hansen. Structure-preserving and rank-revealing QR-
factorizations. SIAM Journal on Scientific and Statistical Computing, 12
(6):1332–1350, 1991.

Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of Data
Science. 2015.

Jonathan M. Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear
Optimization: Theory and Examples. Springer, second edition, 2006.

Christos Boutsidis and David P. Woodruff. Optimal CUR matrix decomposi-
tions. STOC, pages 353–362, 2014.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal
column-based matrix reconstruction. SIAM Journal on Computing, 43(2):
687–717, 2014.

Christopher J. C. Burges. Dimension reduction: A guided tour. Foundations
and Trends in Machine Learning, 2:275–365, 2010.

Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value
thresholding algorithm for matrix completion. SIAM Journal on Optimiza-
tion, 20(4):1956–1982, 2010.

Emmanuel J Candès and B. Recht. Exact matrix completion via convex
optimization. Foundations of Computational Mathematics, 9(6):717–772,
2009.

Emmanuel J Candès and Terence Tao. The dantzig selector: Statistical es-
timation when p is much larger than n. The Annals of Statistics, 35(6):
2313–2351, 2007.

T. F. Chan. Rank revealing QR factorizations. Linear Algebra and Its Appli-
cations, 88:67–82, 1987.



102 References

S. Chandrasekaran and I. C. F. Ipsen. On rank-revealing factorisations. SIAM
Journal on Matrix Analysis and Applications, 15(2):592–622, 1994.

Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the
streaming model. In Proceedings of the forty-first annual ACM symposium
on Theory of computing, pages 205–214. ACM, 2009.

Kenneth L Clarkson and David P Woodruff. Low rank approximation and
regression in input sparsity time. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 81–90. ACM, 2013.

Edith Cohen and David D Lewis. Approximating matrix multiplication for
pattern recognition tasks. Journal of Algorithms, 30(2):211–252, 1999.

Michael Cohen, Sam Elder, Cameron Musco, Christopher Musco, and
Madalina Persu. Dimensionality reduction for k-means clustering and low
rank approximation. arXiv preprint arXiv:1410.6801, 2014.

Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal ap-
proximate matrix product in terms of stable rank. arXiv preprint
arXiv:1507.02268, 2015.

T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman &
Hall/CRC, second edition, 2000.

S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson
and Lindenstrauss. Random Structure & Algorithms, 22(1):60–65, 2003.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man. Indexing by latent semantic analysis. Journal of The American So-
ciety for Information Science, 41(6):391–407, 1990.

J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.
A. Deshpande and L. Rademacher. Efficient volume sampling for row/column

subset selection. In Proceedings of the 51st IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 329–338, 2010.

A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approxima-
tion and projective clustering via volume sampling. Theory of Computing,
2(2006):225–247, 2006.

P. Drineas and M. W. Mahoney. On the Nyström method for approximating
a gram matrix for improved kernel-based learning. Journal of Machine
Learning Research, 6:2153–2175, 2005.

P. Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR
matrix decompositions. SIAM Journal on Matrix Analysis and Applica-
tions, 30:844–881, 2008.



References 103

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo
algorithms for matrices I: Approximating matrix multiplication. SIAM
Journal on Computing, 36(1):132–157, 2006a.

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algo-
rithms for l2 regression and applications. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, pages
1127–1136, Philadelphia, PA, USA, 2006b. Society for Industrial and Ap-
plied Mathematics. ISBN 0-89871-605-5.

Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P.
Woodruff. Fast approximation of matrix coherence and statistical leverage.
Journal of Machine Learning Research, 13(1):3475–3506, 2011a.

Petros Drineas, Michael W Mahoney, S Muthukrishnan, and Tamás Sarlós.
Faster least squares approximation. Numerische Mathematik, 117(2):219–
249, 2011b.

C. Eckart and G. Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1:211–218, 1936.

C. Eckart and G. Young. A principal axis transformation for non-Hermitian
matrices. Bulletin of the American Mathematical Society, 45(2):118–121,
1939.

Ky Fan. Maximum properties and inequalities for the eigenvalues of com-
pletely continuous operators. Proc. Nat. Acad. Sci. USA, 37:760–766, 1951.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into
tiny data: Constant-size coresets for k-means, pca and projective clustering.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1434–1453. SIAM, 2013.

L. V. Foster. Rank and null space calculations using matrix decomposition
without column interchanges. Linear Algebra and its Applications, 74:47–
71, 1986.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the
Nyström method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):214–225, 2004.

A. Frieze, K. Kannan, and Rademacher S. Vempala. Fast Monte Carlo al-
gorithms for finding low-rank approximation. Journal of the ACM, 51(6):
1025–1041, 2004.

Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank
matrix approximations. In Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 707–717. SIAM, 2014.



104 References

P. M. Gibson. Simultaneous diagonalization of rectangular complex matrices.
Linear Algebra and Its Applications, 9:45–53, 1974.

A. Gittens and M. W. Mahoney. Revisiting the Nyström method for im-
proved large-scale machine learning. In International Conference on Ma-
chine Learning (ICML), 2013.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU Press,
3rd edition, 2012.

T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, and M. Caligiuri. Molecular classification of
cancer: class discovery and class prediction by gene expression monitoring.
Science, 286:531–536, 1999.

S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of
pseudoskeleton approximations. Linear Algebra and Its Applications, 261:
1–21, 1997a.

S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov. Pseudo-skeleton
approximations by matrices of maximal volume. Mathematical Notes, 62
(4):619–623, 1997b.

J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Oxford University
Press, 2004.

Ming Gu. Subspace iteration randomization and singular value problems.
SIAM Journal on Scientific Computing, 37(3):1139–1173, 2015.

Ming Gu and S. C. Eisenstat. Efficient algorithms for computing a strong
rank-revealing QR factorization. SIAM Journal on Scientific Computing,
17(4):848–869, 1996.

V. Guruswami and A. K. Sinop. Optimal column-based low-rank matrix
reconstruction. In Proceedings of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2012.

N Halko, P G Martinsson, and J A Tropp. Finding Structure with Random-
ness : Probabilistic Algorithms for Matrix Decompositions. SIAM Review,
53(2):217–288, 2011.

D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation
analysis: An overview with application to learning methods. Neural Com-
putation, 16:2639–2664, 2004.

G. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University
Press, second edition, 1951.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.



References 105

Trevor Hastie, Rahul Mazumder, Jason Lee, and Reza Zadeh. Matrix com-
pletion and low-rank svd via fast alternating least squares. arXiv preprint
arXiv:1410.2596, 2014.

D. C. Hoaglin and R. E. Welsch. The hat matrix in regression and ANOVA.
The American Statistician, 32(1):17–22, 1978.

Y. P. Hong and C. T. Pan. Rank-revealing QR factorizations and the singular
value decomposition. Mathematics of Computation, 58(197):213–232, 1992.

A. Horn. On the singular values of a product of completely continuous oper-
ators. Proc. Nat. Acad. Sci. USA, 36:374–375, 1951.

A. Horn. On the eigenvalues of a matrix with prescribed singular values. Proc.
Amer. Math. Soc., 5:4–7, 1954.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge Univer-
sity Press, Cambridge, UK, 1985.

Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, second edition, 1991.

P. Howland, M. Jeon, and H. Park. Structure preserving dimension reduction
for clustered text data based on the generalized singular value decomposi-
tion. SIAM Journal on Matrix Analysis and Applications, 25(1):165–179,
2003.

R. Jin, T. Yang, M. Mahdavi, Y. F. Li, and Z. H. Zhou. Improved bound
for the Nyström method and its application to kernel classification. IEEE
Transactions on Information Theory, 59(10):6939–6949, 2013.

W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mapping into a
Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

I.T. Jolliffe. Principal component analysis. Springer, New York, second edition
edition, 2002.

Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms.
Journal of the ACM (JACM), 61(1):4, 2014.

Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to
share in multi-task feature learning. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 521–528, 2011.

J. Kittler and P. C. Young. A new approach to feature selection based on the
Karhunen-Loève expansion. Pattern Recognition, 5:335–352, 1973.

S. Kumar, M. Mohri, and A. Talwalkar. Ensemble Nyström method. In
Advances in Neural Information Processing Systems (NIPS), 2009.



106 References

F. G. Kuruvilla, P. J. Park, and S. L. Schreiber. Vector algebra in the analysis
of genome-wide expression data. Genome Biology, 3, 2002.

Anastasios Kyrillidis, Michail Vlachos, and Anastasios Zouzias. Approximate
matrix multiplication with application to linear embeddings. In Information
Theory (ISIT), 2014 IEEE International Symposium on, pages 2182–2186.
IEEE, 2014.

Adrian S Lewis. The mathematics of eigenvalue optimization. Mathematical
Programming, 97(1-2):155–176, 2003.

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 581–588. ACM, 2013.

Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor comple-
tion for estimating missing values in visual data. In Pattern Analysis and
Machine Intelligence, volume 35, pages 208–220. IEEE, 2013.

C. F. Van Loan. Generalizing the singular value decomposition. SIAM Journal
on numerical Analysis, 13:76–83, 1976.

Luo Luo, Yubo Xie, Zhihua Zhang, and Wu-Jun Li. Support matrix machines.
In The International Conference on Machine Learning (ICML), 2015.

Ping Ma, Michael Mahoney, and Bin Yu. A statistical perspective on algorith-
mic leveraging. In International Conference on Machine Learning (ICML),
2014.

Jan R. Macnus and Heinz Neudecker. Matrix Differential Calculus with Appli-
cations in Statistics and Econometrics. John Wiley & Sons, second edition,
2000.

Malik Magdon-Ismail. Using a non-commutative Bernstein bound to ap-
proximate some matrix algorithms in the spectral norm. arXiv preprint
arXiv:1103.5453, 2011.

Avner Magen and Anastasios Zouzias. Low rank matrix-valued chernoff
bounds and approximate matrix multiplication. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Discrete Algorithms,
pages 1422–1436. SIAM, 2011.

M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved
data analysis. Proceedings of the National Academy of Sciences, 106(3):
697–702, 2009.

M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions
for tensor-based data. SIAM Journal on Matrix Analysis and Applications,
30(3):957–987, 2008.



References 107

Michael W. Mahoney. Randomized algorithms for matrices and data. Foun-
dations and Trends in Machine Learning, 3:123–224, 2011.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic
Press, New York, 1979.

Albert W. Marshal, Ingram Olkin, and Barry C. Arnold. Inequalities: Theory
of Majorization and Its Applications. Springer, second edition, 2010.

Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A randomized
algorithm for the decomposition of matrices. Applied and Computational
Harmonic Analysis, 30(1):47–68, 2011.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regulariza-
tion algorithms for learning large incomplete matrices. Journal of machine
learning research, 11:2287–2322, 2010.

S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. Smola, and K. R. Müller.
Invariant feature extraction and classification in kernel space. In Advances
in Neural Information Processing Systems 12, volume 12, pages 526–532,
2000.

L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quar-
terly Journal of Mathemathics, 11:50–59, 1960.

R. J. Muirhead. Aspects of Multivariate Statistical Theory. John Wiley and
Sons, New York, 1982.

N. Muller, L. Magaia, and B. M. Herbst. Singular value decomposition, eigen-
faces, and 3 D reconstruction. SIAM Review, 46:518–545, 2004.

Cameron Musco and Christopher Musco. Stronger approximate singular value
decomposition via the block lanczos and power methods. In Advances in
Neural Information Processing Systems (NIPS), 2015.

Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra
algorithms via sparser subspace embeddings. In IEEE 54th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 117–126. IEEE,
2013.

J. von Neumann. Some matrix-inequalities and metrication of matrix-space.
Tomsk University Review, 1:286–300, 1937.

Evert J. Nyström. Über die praktische auflösung von integralgleichungen mit
anwendungen auf randwertaufgaben. Acta Mathematica, 54(1):185–204,
1930.

C. C. Paige and M. A. Saunders. Towards a generalized singular value de-
composition. SIAM Journal on Numerical Analysis, 18(3):398–405, 1981.



108 References

Christos H Papadimitriou, Hisao Tamaki, Prabhakar Raghavan, and Santosh
Vempala. Latent semantic indexing: A probabilistic analysis. In Proceed-
ings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 159–168. ACM, 1998.

C. H. Park and H. Park. Nonlinear discriminant analysis using kernel functions
and the generalized singular value decomposition. SIAM Journal on Matrix
Analysis and Applications, 27(1):87–102, 2005.

Ting Kei Pong, Paul Tseng, Shuiwang Ji, and Jieping Ye. Trace norm regular-
ization: reformulations, algorithms, and multi-task learning. SIAM Journal
on Optimization, 20(6):3465–3489, 2010.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, Cambridge, MA, 2006.

T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New
Jersey, 1970.

V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal
component analysis. SIAM Journal on Matrix Analysis and Applications,
31:1100–1124, 2009.

V. Roth and V. Steinhage. Nonlinear discriminant analysis using kernel func-
tions. In Advances in Neural Information Processing Systems 12, volume 12,
pages 568–574, 2000.

Yousef Saad. Numerical methods for large eigenvalue problems. preparation.
Available from: http://www-users. cs. umn. edu/saad/books. html, 2011.

Tamas Sarlos. Improved approximation algorithms for large matrices via ran-
dom projections. In Foundations of Computer Science, 2006. FOCS’06.
47th Annual IEEE Symposium on, pages 143–152. IEEE, 2006.

Robert Schatten. A Theory of Cross-Space. Princeton University Press, 1950.
B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press, 2002.
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as

a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.
J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.

Cambridge University Press, Cambridge, UK, 2004.
Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(8):
888–905, 2000.

Si Si, Cho-Jui Hsieh, and Inderjit Dhillon. Memory efficient kernel approxi-
mation. In International Conference on Machine Learning (ICML), pages
701–709, 2014.



References 109

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin
matrix factorization. In Advances in neural information processing systems,
pages 1329–1336, 2004.

G. W. Stewart. Four algorithms for the efficient computation of truncated
pivoted QR approximations to a sparse matrix. Numerische Mathematik,
83(2):313–323, 1999.

G. W. Stewart and J. G. Sun. Matrix Perturbation Theory. Academic Press,
New York, 1990.

A. Talwalkar and A. Rostamizadeh. Matrix coherence and the Nyström
method. In In Proceedings of the 26th Conference in Uncertainty in Arti-
ficial Intelligence, 2010.

A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2008.

Ameet Talwalkar, Sanjiv Kumar, Mehryar Mohri, and Henry Rowley. Large-
scale SVD and manifold learning. Journal of Machine Learning Research,
14:3129–3152, 2013.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geomet-
ric framework for nonlinear dimensionality reduction. Science, 290(5500):
2319–2323, 2000.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B, 58:267–288, 1996.

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM,
1997.

Joel A Tropp. An introduction to matrix concentration inequalities. Founda-
tions and Trends in Machine Learning, 8(1-2):1–230, 2015.

Bojun Tu, Zhihua Zhang, Shusen Wang, and Hui Qiani. Making fisher discrim-
inant analysis scalable. In Proceedings of the 31th International Conference
on Machine Learning (ICML’14), 2014.

M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Proceed-
ings of IEEE International Conference on Computer Vision and Pattern
Recognition, pages 586–591, 1991.

E. E. Tyrtyshnikov. Incomplete cross approximation in the mosaic-skeleton
method. Computing, 64:367–380, 2000.



110 References

T. Van Gestel, J. A. K. Suykens, J. De Brabanter, B. De Moor, and J. Vande-
walle. Kernel canonical correlation analysis and least squares support vector
machines. In The International Conference on Artificial Neural Networks
(ICANN), pages 381–386, 2001.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York,
1998.

Santosh S. Vempala. The Random Projection Method. American Mathemat-
ical Society, 2000.

Shusen Wang and Zhihua Zhang. Improving CUR matrix decomposition and
the Nyström approximation via adaptive sampling. Journal of Machine
Learning Research, 14:2729–2769, 2013.

Shusen Wang and Zhihua Zhang. Efficient algorithms and error analysis for
the modified nyström method. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2014.

Shusen Wang, Luo Luo, and Zhihua Zhang. The modified Nyström method:
Theories, algorithms, and extension. CoRR, abs/1406.5675, 2014a. URL
http://arxiv.org/abs/1406.5675.

Shusen Wang, Chao Zhang, Hui Qian, and Zhihua Zhang. Improving the mod-
ified nyström method using spectral shifting. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD), 2014b.

Shusen Wang, Zhihua Zhang, and Tong Zhang. Improved analyses of the
randomized power method and block Lanczos method. arXiv:1508.06429,
2015a. URL http://arxiv.org/abs/1508.0642.

Shusen Wang, Zhihua Zhang, and Tong Zhang. Towards more efficient sym-
metric matrix sketching and cur matrix decomposition. arXiv preprint
arXiv:1503.08395, 2015b.

D. S. Watkins. Fundamentals of Matrix Computations. John Wiley and Sons,
New York, 1991.

G. A. Watson. Characterization of the subdifferential of some matrix norms.
Linear Algebra and Its Applications, 170:33–45, 1992.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems (NIPS),
2001.

Rafi Witten and Emmanuel Candès. Randomized algorithms for low-rank
matrix factorizations: sharp performance bounds. Algorithmica, 72(1):264–
281, 2013.

http://arxiv.org/abs/ 1406.5675
http://arxiv.org/abs/1508.0642


References 111

David Woodruff. Low rank approximation lower bounds in row-update
streams. In Advances in Neural Information Processing Systems, pages
1781–1789, 2014a.

David P Woodruff. Sketching as a tool for numerical linear algebra. Founda-
tions and Trends in Theoretical Computer Science, 10(1-2):1–157, 2014b.

Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast ran-
domized algorithm for the approximation of matrices. Applied and Com-
putational Harmonic Analysis, 25(3):335–366, 2008.

J. Ye and T. Xiong. Computational and theoretical analysis of null space
and orthogonal linear discriminant analysis. Journal of Machine Learning
Research, 7:1183–1204, 2006.

K. Zhang and J. T. Kwok. Clustered Nyström method for large scale manifold
learning and dimension reduction. IEEE Transactions on Neural Networks,
21(10):1576–1587, 2010.

K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nyström low-rank ap-
proximation and error analysis. In International Conference on Machine
Learning (ICML), 2008.

Zhihua Zhang. The matrix ridge approximation: algorithms and applications.
Machine Learning, 97:227–258, 2014.

Zhihua Zhang, Guang Dai, Congfu Xu, and Michael I. Jordan. Regularized
discriminant analysis, ridge regression and beyond. Journal of Machine
Learning Research, 11:2199–2228, 2010.

Hua Zhou and Lexin Li. Regularized matrix regression. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 76(2):463–483, 2014.


	Introduction
	Roadmap
	Notation and Definitions

	 Preliminaries
	Kronecker Products and Vectorization Operators
	Majorization
	Derivatives and Optimality

	The Singular Value Decomposition
	Formulations
	Matrix Properties via SVD
	Matrix Concepts via SVD
	Generalized Singular Value Decomposition

	Applications of SVD: Case Studies
	The Matrix MP Pseudoinverse
	The Procrustes Problem
	Subspace Methods: PCA, MDS, FDA, and CCA

	The QR and CUR Decompositions
	The QR Factorization
	The CUR Decomposition

	Variational Principles
	Variational Properties for Eigenvalues
	Variational Properties for Singular Values
	Appendix: Application of Matrix Differentials

	Unitarily Invariant Norms
	Matrix Norms
	Symmetric Gauge Functions
	Unitarily Invariant Norms via SGFs
	Properties of Unitarily Invariant Norms

	Subdifferentials of Unitarily Invariant Norms
	Subdifferentials
	Applications

	Matrix Low Rank Approximation
	Basic Results
	Approximate Matrix Multiplication

	Large-Scale Matrix Approximation
	Randomized SVD
	Kernel Approximation
	The CUR Approximation

	Acknowledgements
	References

