

 Copyright © 2016 by Syncfusion Inc.

 2501 Aerial Center Parkway

 Suite 200

 Morrisville, NC 27560

 USA

 All rights reserved.

 Important licensing information. Please read.

 This book is available for free download from www.syncfusion.com on completion of a registration form.

 If you obtained this book from any other source, please register and download a free copy from www.syncfusion.com.

 This book is licensed for reading only if obtained from www.syncfusion.com.

 This book is licensed strictly for personal, educational use.

 Redistribution in any form is prohibited.

 The authors and copyright holders provide absolutely no warranty for any information provided.

 The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising from, out of, or in connection with the information in this book.

 Please do not use this book if the listed terms are unacceptable.

 Use shall constitute acceptance of the terms listed.

 SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the registered trademarks of Syncfusion, Inc.

 Technical Reviewer: Jim Perry

 Copy Editor: Courtney Wright

 Acquisitions Coordinator: Morgan Weston, social media marketing manager, Syncfusion, Inc.

 Proofreader: Darren West, content producer, Syncfusion, Inc.

 Table of Contents

 The Story behind the Succinctly Series of Books

 About the Author

 Preface

 Chapter 1 Go Gulp

 Chapter 2 Let's Build Something

 Chapter 3 Watching Updates

 Chapter 4 Handy Little Tasks

 Chapter 5 Gulp in Visual Studio

 Chapter 6 The Future Looks Bright

 Appendix Resources

 Detailed Table of Contents

The Story behind the Succinctly Series of Books

 Daniel Jebaraj, Vice President

 Syncfusion, Inc.

 Staying on the cutting edge

 As many of you may know, Syncfusion is a provider of software components for the Microsoft platform. This puts us in the exciting but challenging position of always being on the cutting edge.

 Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other week these days, we have to educate ourselves, quickly.

 Information is plentiful but harder to digest

 In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

 While more information is becoming available on the Internet and more and more books are being published, even on topics that are relatively new, one aspect that continues to inhibit us is the inability to find concise technology overview books.

 We are usually faced with two options: read several 500+ page books or scour the web for relevant blog posts and other articles. Just as everyone else who has a job to do and customers to serve, we find this quite frustrating.

 The Succinctly series

 This frustration translated into a deep desire to produce a series of concise technical books that would be targeted at developers working on the Microsoft platform.

 We firmly believe, given the background knowledge such developers have, that most topics can be translated into books that are between 50 and 100 pages.

 This is exactly what we resolved to accomplish with the Succinctly series. Isn't everything wonderful born out of a deep desire to change things for the better?

 The best authors, the best content

 Each author was carefully chosen from a pool of talented experts who shared our vision. The book you now hold in your hands, and the others available in this series, are a result of the authors' tireless work. You will find original content that is guaranteed to get you up and running in about the time it takes to drink a few cups of coffee.

 Free forever

 Syncfusion will be working to produce books on several topics. The books will always be free. Any updates we publish will also be free.

 Free? What is the catch?

 There is no catch here. Syncfusion has a vested interest in this effort.

 As a component vendor, our unique claim has always been that we offer deeper and broader frameworks than anyone else on the market. Developer education greatly helps us market and sell against competing vendors who promise to “enable AJAX support with one click,” or “turn the moon to cheese!”

 Let us know what you think

 If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at succinctly-series@syncfusion.com.

 We sincerely hope you enjoy reading this book and that it helps you better understand the topic of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the word about the Succinctly series!

 [image: Twitter Icon] [image: Facebook Icon]

About the author

Kris van der Mast started his professional career in 2000
after graduating as an engineer. His main focus has been on web technology and
Azure, Microsoft’s cloud platform. He’s been awarded by Microsoft as MVP since
2007 for his community work about ASP.NET. He’s also acknowledged as Microsoft
ASP Insider, Azure Insider, and Azure Advisor, and is a board member of the
Belgian Azure User Group azug.be and the Belgian User Group Initiative. He’s a
speaker at local user group meetings and conferences both in Belgium and abroad.
In early 2016, Kris started his own consultancy company, VaHa, providing
expertise and knowledge while helping clients succeed.

Preface

Code samples

Just as in any other good book about coding, you can
follow along and try out the code. For your convenience, the code is available
for download here.

How to contact me

You can follow me on my blog, on Twitter via @KvdM, or email
me at kris.vandermast+syncfusion@gmail.com.

Chapter 1 Go Gulp

Introduction

Gulp is an easy-to-learn, easy-to-use JavaScript task
runner. It favors code over configuration and is fast while executing its
tasks. It gained a lot of attention from front-end engineers worldwide and from
Microsoft as it has become the default used in the ASP.NET templates in Visual
Studio 2015.

Gulp stream flow

Reading in files, processing them, and then writing the
outcome is the bread and butter of a task runner. Unlike others, Gulp processes
this stream of tasks in memory instead of writing the outcome of every
step to disk. This makes it far more efficient and performant. The processing
itself is done by plugins, small dedicated tasks that perform their
dedicated logic on what they receive, and then pass it on. There’s already a
bunch of them, and you can create new ones if you like. At the moment of
writing, there are already 1,533 plugins
available.

Let’s visualize this in an easy-to-understand flow
diagram:

Figure 1: Gulp flow

Four APIs to rule them all

Gulp makes it easy for you to get started, as it only
provides four API functions with which you can perform a lot of magic.

So, let’s take a look at these four API functions and what
they have to offer.

gulp.src()

With the .src() function,
you load a file or files with either a direct path or make use of the node-glob
syntax. This latter is beyond the scope of this book but you can read all about
it here.

gulp.dest()

After having gone through the stream of plugins and having
their respective tasks performed, you likely want to have that hard work result
in some output. With the dest() function, you
can do just that, and write the output to disk.

The dest() function emits
all data passed to it. This means that it can write to multiple folders when
needed. It is even possible to write the outcome of a flow and then continue
working with that result and apply other plugins on it.

Code Listing 1

 gulp.src('./client/templates/*.jade')

 .pipe(jade())

 .pipe(gulp.dest('./build/templates'))

 .pipe(minify())

 .pipe(gulp.dest('./build/minified_templates'));

In the sample code, you can see that via the .src() function, files are being loaded and then piped
into a flow existing of plugins and destinations. The files are being processed
and written to ./build/templates, and then they
are minified by another plugin, and the outcome of that is being written to ./build/minified_templates.

The visualization of this can be seen in the following figure:

Figure 2: Gulp flow with multiple destinations

gulp.task()

This forms a logical wrapper around the .src(), .dest(), and stream.
When you make up your Gulp file, you can have more than one task defined, and
even have dependencies defined before a certain task can run. A very simple
task that takes files from one folder and copies them over to another could be
the following:

Code Listing 2

 gulp.task('copyScripts', function () {

 // copy any javascript
 files in source/ to public/

 gulp.src('source/*.js').pipe(gulp.dest('public'));

 });

When run, the code functions as follows: the files in the
source folder with extension .js will be copied over to the folder public.
We will see how to run it in the next chapter.

gulp.watch()

This function keeps an eye on file changes and acts
accordingly. Chapter 3 is going to be
completely devoted to this.

npm and Node.js

As we saw before, Gulp makes use of plugins. These are
distributed in an easy way through npm.
You can search on that particular site for Gulp plugins. The good thing is,
they usually start with gulp-. For example, if you open the npm webpage and
type in the search box “gulp-clean-css,” you get to see how to install the plugin and API, and
some samples on how to use it.

From these samples you can see that the syntax feels like
Node.js syntax. That’s correct; Gulp builds on top of this framework. If you
don’t know Node.js, that’s perfectly fine—you’ll still be able to follow along
in this book.

Chapter 2 Let’s Build Something

Installing Gulp

As mentioned in Chapter 1, Gulp is a task runner that runs
on top of node.js. So to have Gulp running, we will need to install node.js.
You can download it for your system here.
With it comes the Node Package Manager, or npm. You will use npm a lot throughout
the rest of the book to install the needed Gulp plugins. More on that later.

After you’ve installed node.js, you need to open a console
window or terminal window and type in the following:

npm install --global gulp

This installs Gulp globally and adds Gulp to the path on
your machine.

 	
 [image:]

 	
 Tip: when you don’t run under
administrator privileges on a Mac, you will need to prefix this command with sudo. So it becomes sudo npm install --global gulp.

The former steps only need to be performed once per
machine on which you want to use Gulp.

Once you have taken these steps, you can type in the
following command to check if all is set up and good to go.

node –v

npm –v

gulp –v

This will give you the version of each component. When I
was writing this paragraph, the versions you see in the next figure were available
on my machine. By the time you read this, the version numbers will likely have
already changed.

Figure 3: Showing the versions of node.js, npm, and Gulp
CLI

How to install plugins

The steps you had to take in the former paragraph only
need to be performed once per machine. Plugins, however, you will need to
install for each project you are working on.

Depending on which tools you use, things might be
automated for you. In that case, check the documentation of the tool you are
making use of.

If you are simply using a text editor and a terminal
window like the first chapters in this book, you can follow these steps:

	Create a folder where you want to make your application

	Open that folder and type in npm init.
This will create a package.json file after you have gone through all of the
setup steps. During the setup, you can either fill in every line, or you can
quickly step through it by pressing the Enter key for every question and
answering Yes at the end.

	You can now install Gulp and Gulp plugins via the command:

a.npm install gulp --save-dev

b.npm install gulp-less --save-dev (to install the Gulp
plugin gulp-less, for example)

 	
 [image:]

 	
 Tip: When you know the plugins up front,
you can also make this one statement, like npm
install gulp gulp-less gulp-coffeescript --save-dev to install all three
modules at once.

 	
 [image:]

 	
 Tip: If you found sample code and
notice a lot of entries in the package.json file, you can simply retrieve them
all by typing npm install --save-dev,
which will in turn look up the packages and restore them locally.

gulpfile.js

gulpfile.js is where you’ll spend your time writing your
tasks on a per-project basis. It is the standard file for Gulp to look into
what to do. You can create it with your favorite text editor.

For this book, you can either obtain the code from GitHub, or even better, type in the code yourself
in your favorite editor and learn by doing.

Create a folder where you want to keep the code, and
create a subfolder in it called Chapter 2. Create a new file called gulpfile.js
and have it opened in a text editor of your choice.

gulpfile.js is always placed in the root folder of your project.
As such, the commands mentioned for the terminal windows or DOS box are meant
to be run from the root of that same project root folder. Further in the book, I
took the privilege to put the start files, like less, sass, and coffeescript under
an Assets subfolder. I’ll also state where to put the listings from the
current subfolder position. It’s up to you to decide where you want to put it
on your local hard drive (likely some temp or code folder). The place for code
listings will be written like /Assets/colors.less or /gulpfile.js,
for example, where / stands for the subfolder you started to test out
the code. For example: c:\code\chapter2\defaulttask\.

Default task

Ok, you’re ready for your first task. Or better, the
default task. This is the task that will run when you execute the gulp command without specifying which task should be
run. Be sure to have your environment set up to be able to use Gulp. Please
refer to Appendix A.

In an Assets subfolder, create two new files, which
will contain the following:

Code Listing 3: CodeFolder/Assets/Colors.less

 @color:#b6ff00;

 @backcolor:#808080;

Code Listing 4: /Assets/Styles.less

 @import "Colors.less";

 body {

 background-color: @backcolor;

 }

 a {

 color: @color;

 &:hover {

 color: @color + @backcolor;

 }

 }

Now directly under the Chapter 2 folder, open the gulpfile.js
file and add the following piece of code:

Code Listing 5: /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 var minifyCSS = require('gulp-clean-css');

 gulp.task('default', function () {

 gulp.src('Assets/Styles.less')

 .pipe(less())

 .pipe(gulp.dest('wwwroot/css'));

 });

In Code Listing 5, we see there are some plugins needed,
so let’s install them via the commands. Be sure to set the path of your
terminal window or console window to Chapter 2:

	npm install --save-dev gulp

	npm install --save-dev gulp-less

	npm install --save-dev gulp-clean-css

 	
 [image:]

 	
 Tip: when you don’t run under administrator
privileges on a Mac, you can prefix these commands with sudo, so it becomes sudo
npm install --save-dev gulp. This will ask for a password after
which the installation will continue without having to run with administrative
permissions.

From that terminal window or DOS window you’re in now in,
make sure you’re in the folder Chapter 2, where the gulpfile.js file is. Type gulp and press the Enter key. Wait a bit and
see the result under the newly created wwwroot\css subfolder. Depending on your
machine, this can be fast or very fast—great performance is one of the strong
points of Gulp.

Figure 4: Running a default task in Gulp

There’s only one styles.css file right now, with the
following expected output:

Code Listing 6: /wwwroot/css/styles.css

 body {

 background-color: #808080;

 }

 a {

 color: #b6ff00;

 }

 a:hover {

 color: #ffff80;

 }

Great to see our less files
got compiled and written out as a .css file we can use. But we also want
to minify the .css file, so re-open the gulpfile.js file and make use of
the minification plugin, like this:

Code Listing 7: Adjusted /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 var minifyCSS = require('gulp-clean-css');

 gulp.task('default', function () {

 gulp.src('Assets/Styles.less')

 .pipe(less())

 .pipe(minifyCSS({ keepBreaks: false }))

 .pipe(gulp.dest('wwwroot/css'));

 });

Run Gulp again, and now the outcome becomes:

Code Listing 8: Minified css
file: /wwwroot/css/styles.css

 body{background-color:grey}a{color:#b6ff00}a:hover{color:#ffff80}

Options

In Code Listing 6, we not only made use of the call to minifyCSS, but we also passed in a parameter, {keepBreaks:false}. Some plugins provide the ability
to pass in options. Depending on the text editor you’re using, you might get
code completion, but usually the easiest way is to take a look at the
documentation. So for example, for gulp-clean-css,
we can take a look at this
documentation.

However, we don’t see the options being mentioned. How
come? We can see on that page that this plugin is rather a simple wrapper
around the clean-css Node.js library. Clicking
further to the documentation of that particular library, we can see the overview. As you can see,
there are quite a lot of them.

As an exercise, you can play around with the different
options and see what happens to the output. You can start with the simplest
change in your Gulp file and set {keepBreaks:true}.

Other tasks

The previous paragraph introduced you to running a task.
It was also pretty simple to add extra plugins into the stream, and as such,
alter the behavior of our task. Well that’s all great, but you might be tempted
to put everything into one big task. It would lead to cumbersome code, however,
and would become hard to maintain later on during and after your development
cycle.

This is the reason why it is also possible to have
multiple tasks in Gulp. Just like in most other programming languages, you
would write or refactor your code into smaller pieces. It makes it easier to
find the code you want to change or copy to another project. Another advantage
is that perhaps you don’t want to have all of your tasks being executed at the
same time. It could very well be that only a small portion needs to be run
again, instead of the monolithic bunch.

Let us take again the code from Code Listing 6 and change
the default task to what it really does: transforming less
files and minifying the resulting CSS from that process. The code now becomes:

Code Listing 9: Adjusted /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 var minifyCSS = require('gulp-clean-css');

 gulp.task('transformLessAndMinifyCSS', function () {

 gulp.src('Assets/Styles.less')

 .pipe(less())

 .pipe(minifyCSS({ keepBreaks: false }))

 .pipe(gulp.dest('wwwroot/css'));

 });

Now go back to your terminal and run the gulp command. As you can see from Figure 5, nothing
will run, as we don’t have a default task anymore.

Figure 5: Trying to run a default task but nothing got
found

However, if we try to run the gulp
command accompanied with the specific name of the task, it will run. So in the
terminal, type gulp transformLessAndMinifyCSS.
See the output of that in Figure 6. If you want to verify the output, I
recommend deleting the generated file under /wwwroot/css. Later on we
will see that we can also make use of Gulp to do that for us. This will give us
more certainty that the output is really what we expect.

Figure 6: Specifying the task you want to run explicitly

It would be nice, though, if we could have one entry
point, the default task, and have another task run from there. If we make some adjustments
to our gulpfile.js file, we can reach that goal as well.

Code Listing 10: Default
task calls transformLessAndMinifyCSS task /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 var minifyCSS = require('gulp-clean-css');

 gulp.task('default', ['transformLessAndMinifyCSS'], function () {

 console.log('Do
 something else while you\'re here...');

 });

 gulp.task('transformLessAndMinifyCSS', function () {

 gulp.src('Assets/Styles.less')

 .pipe(less())

 .pipe(minifyCSS({
 keepBreaks: true }))

 .pipe(gulp.dest('wwwroot/css'));

 });

Figure 7: Running a dependent task

In Figure 6 we can see that task transformLessAndMinifyCSS
ran before going to the function body of the default task where a console.log statement was put to show the order of
execution.

Code Listing 8 shows an extra parameter in the task
function call:

gulp.task('default',
['transformLessAndMinifyCSS'], function()

It’s the way Gulp passes in other functions that it’s
dependent on. Let’s discuss that shortly.

Task dependencies

So far we’ve only seen a simple task, up until the last
sample, Code Listing 8. By default, Gulp tries to be as performant as it can be,
and runs tasks in maximum concurrency.

Code Listing 11: Running in
maximum concurrency /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 var minifyCSS = require('gulp-clean-css');

 gulp.task('task1', function () {

 console.log('Task 1
 is executing...');

 });

 gulp.task('task2', function () {

 console.log('Task 2
 is doing its thing...');

 });

 gulp.task('build', ['task1', 'task2']);

 gulp.task('default', ['build'], function () {

 console.log('default
 task...');

 });

The output of this is the following:

Figure 8: Running dependent tasks

We can see that we start with the default
task in our code, which calls the build task,
which on its own calls both task1 and task2. We see that task1
and task2 run first, as the build task is dependent on these two, and will not run
before both have finished. Once that happens, the build
function can do its part, and then it’s up to the default
task to run. The following figure displays the tree used in this code:

Figure 9: Dependent tasks

This was a small and, frankly, quite easy tree. As you can
imagine in a real-life project, there will more tasks in a gulpfile.js with
either standalone tasks or a mix of standalone and dependent tasks. What if
several tasks are made dependent on the same task? What happens then? Let’s
find out. To make it easier to follow, here is the tree of what’s going to
happen:

Figure 10: Dependent tasks running the same sub-task

And our code:

Code Listing 12: Running a
task from different places /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 gulp.task('clean', function () {

 console.log('Cleaning
 up...');

 });

 gulp.task('task1', ['clean'], function () {

 console.log('Task 1
 is executing...');

 });

 gulp.task('task2', ['clean'], function () {

 console.log('Task 2
 is doing its thing...');

 });

 gulp.task('build', ['task1', 'task2']);

 gulp.task('default', ['build'], function () {

 console.log('default
 task...');

 });

You can see that both task1
and task2 depend on the clean
task. An example could be that some output folder(s) need to be cleaned before
other tasks can do what they are intended for, and you don’t want to leave
something behind from a previous run.

And you guessed correctly: the clean
task will only be run once. Gulp is smart enough to figure out that there are
more tasks that might make the call, but that it would be overhead to run the
same task twice.

After running the code in the gulpfile.js file, the output
can be seen in the following figure:

Figure 11: Running multiple tasks that depend on the same
task

Summary

In this chapter we saw the basics of Gulp tasks. We saw
single tasks, the default task, multiple tasks, and even dependencies on other
tasks. In later chapters we will see more examples, but for now, you know the
basics and the different combinations.

Chapter 3
Watching Updates

The former chapter was completely about the bread and
butter of Gulp: tasks. This chapter will be about reacting when files or
folders change, and then acting accordingly. This gives quite some power to Gulp
and makes certain scenarios easier for the developer so she can focus more on
the job without being distracted by repetitive steps.

Watching a file

While developing your website or web application, you know
you’ll have to do some manual actions before you can see your changes ending up
in the browser. Even though Gulp already makes life easier with tasks, it still
requires some manual intervention, like opening some shell and typing a command
like gulp generateCssFromLessFiles.

Wouldn’t it be great if we could just skip that part and
let Gulp figure things out by itself? Welcome to the Gulp watch API.

We’re going to start easy and base the next code on Code Listing
5, which we saw in Chapter 2. It’s going to be changed to meet our goal: less
repetitive work and automating a Gulp task. In a folder named Chapter 3,
I placed it at the same level as the Chapter 2 folder, created a new gulpfile.js
file, and put the code from Code Listing 11 in it. Also create a subfolder
named Assets in which you place a .less file, as shown in the
following code:

Code Listing 13: Watching a
file: /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 gulp.task('watchLessFiles', function () {

 gulp.watch('./Assets/styles.less', function (event) {

 console.log('Watching
 file ' + event.path + ' being ' + event.type + ' by gulp.');

 })

 });

 gulp.task('default', ['watchLessFiles']);

Code Listing 14: A simple
.less file: /Assets/Styles.less

 @color:#b6ff00;

 @backcolor:#808080;

 body {

 background-color: @backcolor;

 }

 a {

 color: @color;

 &:hover {

 color: @color + @backcolor;

 }

 }

Don’t forget to install the needed Gulp plugins:

·
npm install gulp --save-dev

·
npm install gulp-less --save-dev

Now run the default Gulp task to start the watch task. The result of that is shown in the
following figure.

Figure 12

Now the file in the Assets folder is being watched. To
test this out, open the styles.less file in a text editor and type a
space extra in it. Now save it and take a look at the output again in Figure 13.

Figure 13: Output after the file that is being watched has
been changed and saved

The event.path shows the
path of the file we’re watching, while the event.type
showed us correctly the output changed. Other possible types are either added
or deleted.

It’s great to see that some file has changed on saving it,
but we talked about automating things. In this case, it’s the processed .less
file into a .css file that we are interested in. To do so, simply change the gulpfile.js
file a bit:

Code Listing 15: Processing
the .less file into a .css file /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 gulp.task('lessToCss', function () {

 gulp.src('Assets/Styles.less')

 .pipe(less())

 .pipe(gulp.dest('wwwroot/css'));

 });

 gulp.task('watchLessFiles', function () {

 gulp.watch('./Assets/styles.less', ['lessToCss']);

 });

 gulp.task('default', ['watchLessFiles']);

Run Gulp again, change the styles.less file, and
save it. Doing so a couple of times runs the task each time the .less file is
being saved, as we can see in the output:

Figure 14: Repeated saving of the .less file results each
time in running task lessToCss

That for sure saves valuable time. To do so, we needed to
change the file, save it, run the task lessToCss
ourselves, and in that process, leave our text editor.

To stop the process, you can simply use the keyboard
combination Ctrl + C. To start watching again, simply run the default Gulp
task again.

Figure 15: Repeated changes to the .less file were made

Watching a folder

In the previous section, we saw how to watch a file and
act when it was being saved. That’s nice, but it really becomes interesting
when we can do that for an entire folder. We can alter the code a bit to
include a variable. This will hold the path so we do not have to type it in
every time and potentially make errors by mistyping them.

The altered code looks like this now:

Code Listing 16: Processing
the .less files into .css files /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 var lessPath = './Assets/**/*.less';

 gulp.task('lessToCss', function () {

 gulp.src(lessPath)

 .pipe(less())

 .pipe(gulp.dest('wwwroot/css'));

 });

 gulp.task('watchLessFiles', function () {

 gulp.watch(lessPath, ['lessToCss']);

 });

 gulp.task('default', ['watchLessFiles']);

The variable lessPath makes
use of a glob notation Assets/**/*.less. This is
a powerful way of writing it, as it means “take all .less files directly under
the Assets folder, and also those in subfolders of the Assets folder.” So
instead of having to write a path for every subfolder and going through that,
you have the opportunity to write it in one single, compact way.

If we run the code and change some of the .less files (either
directly under the Assets folder or any subfolder) and we save that .less file,
the task lessToCss is run and the output is written
to the wwwroot/css folder and takes the subfolders under the Assets folder into
account.

Figure 16: Watching multiple files and folders

Now if you try adding a new .less file and saving it…
nothing happens. However, if you would change a .less file which already
existed before adding the watch on it, the new .less file would also get
transformed into a .css file. The latter is obvious, but we would expect that
it would also work with new files.

New files in the folder, what now?

In the previous section we noticed that new files added after
the watch has already been set on it do not get run. Gulp’s watch is powerful, but
not omnipotent. It will do its best, but if we plan on adding new files, we
need something stronger.

That something stronger comes in the form of a plugin: gulp-watch. To obtain it, simply run the familiar
command npm install --save-dev gulp-watch.

Because it’s a plugin, we will need to rewrite our code somewhat,
as it needs to be plugged in into to the stream in order for it to work. The
code becomes something like the following:

Code Listing 17: Making use
of the gulp-watch plugin /gulpfile.js

 "use
 strict";

 var gulp = require('gulp');

 var less = require('gulp-less');

 var gulpWatch = require('gulp-watch');

 var lessPath = './Assets/**/*.less';

 gulp.task('lessToCss', function () {

 gulp.src(lessPath)

 .pipe(gulpWatch(lessPath))

 .pipe(less())

 .pipe(gulp.dest('wwwroot/css'));

 });

 gulp.task('default', ['lessToCss']);

Now run the Gulp default task and try adding a new .less
file in the /Assets folder. You will notice that in the wwwroot/css
folder there will be a new .css file.

Live reload your browser

The following process is familiar to web developers: you
make some changes in a file, you save it, perhaps you do some build step with Gulp,
and then you reload the browser to see the outcome of the former steps. Most
web developers or designers do not even think about it anymore, and simply
press the Ctrl + F5, or Command + R on the Mac.

It would be great if we could relieve ourselves of some of
those steps. Well, with a handy plugin like gulp-connect,
you can go a long way. There are alternatives, like gulp-livereload,
but that one relies on a plugin that needs to be installed in your browser.

At this point, make sure you have all the needed modules
installed (gulp, gulp-less,
gulp-jade, and gulp-connect).

For this example, we are going to make use of Jade to
generate HTML pages, Less to generate CSS style sheets, Gulp tasks and watchers,
and of course, the gulp-connect plugin. Before
adding the reload functionality, let us just create the bare minimum for this
small project. The layout is as follows:

Figure 17: Project folder and file structure

 	
 [image:]

 	
 Note: gulpfile.js
and package.json are directly under the LiveReload folder, not under the
node_modules subfolder. The Cobalt2 theme used in Sublime Text might give that
impression. Gulpfile.js and package.json always go directly under the root
folder of the project.

The index.jade file looks like the following:

Code Listing 18: /Assets/Jade/index.jade

 doctype
 html

 html

 head

 title
 Hello world

 link(rel="stylesheet",
 href="css/styles.css")

 body

 h1
 gulp is great

 p
 it seems like it's working

 script(src="js/main.js")

The Less files look like the following:

Code Listing 19: /Assets/Less/colors.less

 @color1: #c9c9c9;

 @color2: #e3e3e3;

 @color3: #9ad3de;

 @color4: #89bdd3;

Code Listing 20: /Assets/Less/styles.less

 @import "colors.less";

 body {

 color: @color1;

 background-color: @color4;

 }

 h1 {

 color: @color2;

 background-color: @color3;

 }

And the gulpfile.js:

Code Listing 21: /gulpfile.js

 "use
 strict";

 var gulp = require('gulp'),

 less
 = require('gulp-less'),

 jade
 = require('gulp-jade'),

 connect
 = require('gulp-connect');

 var jadeDir = './Assets/Jade/**/*.jade';

 var lessDir = './Assets/Less/**/*.less';

 var outputDirHtml = './';

 var outputDirCss = './css/';

 gulp.task('jade', function () {

 gulp.src(jadeDir)

 .pipe(jade())

 .pipe(gulp.dest(outputDirHtml))

 });

 gulp.task('less', function () {

 gulp.src(lessDir)

 .pipe(less())

 .pipe(gulp.dest(outputDirCss));

 });

 gulp.task('watch', function () {

 gulp.watch([jadeDir], ['jade']);

 gulp.watch([lessDir], ['less']);

 })

 gulp.task('default', ['jade', 'less', 'watch']);

Running the gulp command
from the terminal ensures that the index.html and css files get generated while
the watch task adds the familiar watch over the input
files. Try changing the Jade or Less files to see it getting updated.

Now open a browser and open it on the index.html
page. Change something in the index.jade file, save it, and refresh your
browser to see the changes.

Time to let the magic in. Change the gulpfile.js to the
following:

Code Listing 22: gulpfile.js
with livereload capabilities - /gulpfile.js

 "use
 strict";

 var gulp = require('gulp'),

 less
 = require('gulp-less'),

 jade
 = require('gulp-jade'),

 connect
 = require('gulp-connect');

 var jadeDir = './Assets/Jade/**/*.jade';

 var lessDir = './Assets/Less/**/*.less';

 var outputDirHtml = './';

 var outputDirCss = './css/';

 gulp.task('jade', function () {

 gulp.src(jadeDir)

 .pipe(jade())

 .pipe(gulp.dest(outputDirHtml))

 .pipe(connect.reload());

 });

 gulp.task('less', function () {

 gulp.src(lessDir)

 .pipe(less())

 .pipe(gulp.dest(outputDirCss))

 .pipe(connect.reload());

 });

 gulp.task('watch', function () {

 gulp.watch([jadeDir], ['jade']);

 gulp.watch([lessDir], ['less']);

 })

 gulp.task('connect', function () {

 connect.server({

 root: './',

 livereload: true

 });

 });

 gulp.task('default', ['jade', 'less', 'watch', 'connect']);

Another important piece of code to add, and one that’s easily
overlooked, is the call for a reload whenever the Jade file or one of the Less
files have been changed: .pipe(connect.reload());.
In the jade and less
tasks, make sure to trigger a reload. After the building has run an update, it’s
triggered and the browser reloads at the same time. Run the gulp command and the following will appear:

Figure 18: LiveReload

First, it will execute the tasks to parse the Jade file
into HTML, the Less files into CSS, and add watches on the former two. It will
also execute the connect task. In that task, the
root URL is set and the live reloading option should be turned on. You need to
do this explicitly; otherwise, it will not kick in.

The last two lines of the output reveal where to navigate
to: http://localhost:8080. The gulp-connect
plugin provides a built-in server, which we will need for this example.

Open the browser of choice and surf to http://localhost:8080/index.html.
You will see a page like the following:

Figure 19: The initial result after the jade and less tasks
have run

Due to having the jade and less tasks run, the output of these has resulted in
added files to our solution:

Figure 20: The solution after the jade and less tasks have
run

Now for the cool part. Keep the browser in visible range
of the the screen while you change something in either the Jade or the Less
files. Upon saving, you will see an instant update in the browser. For this
demo I opted to change the colors in the corresponding colors.less
file.

Figure 21: The colors.less file is changes and saved

The reason why this works is that gulp-connect
injects an extra bit of JavaScript in the HTML. By making use of the F12 tools
of the browser, we can easily see the following:

Figure 22: The injected JavaScript parts by gulp-connect

If you are familiar with Visual Studio and ASP.NET web
development, you might have encountered something similar. There it is called
BrowserLink, where you can change something in the CSS file in Visual Studio
and it automatically updates the browser.

Summary

In this chapter you saw that gulp.js is not only great at
running tasks, but also watching out for changes. Put to work in a clever way,
you can take away the burden of having to constantly execute the Gulp tasks
manually, or even reloading your browser yourself. This leaves you with more
time to focus on the stuff that matters: writing solid code that solves your
business needs.

Chapter 4 Handy little tasks

This chapter’s purpose is to get the reader further into Gulp.
We’ll do this by showing small snippets of code and usage of everyday tasks that
a developer might need.

Script translation

During the past years, the web has seen an incredible
increase in the usage of JavaScript. In the beginning, it was merely used to
respond to some click event to toggle the visibility of some HTML element like
a picture. Nowadays, it is no exception to see web applications with thousands
of lines of JavaScript code, performing a bunch of tasks in the browser instead
of posting back everything to the server and waiting for an answer. So-called
Singe Page Applications (SPA) have seen an increase in popularity. It comes
with a downside though: complexity can become very tough and small mistakes are
easily made. As such, we also see a growing number of tools and languages that transpile
the code you write in them into JavaScript. Normally this is a manual task that
might become tedious after a while. Luckily we are making use of gulp.js, which
makes life easier by automating things.

 	
 [image:]

 	
 Note: Transpiling
is a specific term used to indicate the process of transforming one language
into another one while keeping the same level of abstraction—basically going
from CoffeeScript, TypeScript…to JavaScript. Compiling is going from one
language and transforming it into something else, like compiling C# into binary
code (IL in this case).

CoffeeScript

CoffeeScript was likely the first language I encountered
that would generate JavaScript after translation. However, if you have a bunch
of files, and several are changed, it would mean translating them one by one.
Not anymore with Gulp. There’s a simple plugin available for it, which we can
use in our gulp tasks or watchers.

Code Listing 23: Fibonaci in
CoffeeScript – /Assets/Coffee/fibonacci.coffee

 fib
 = (x) ->

 if x < 2

 x

 else

 fib(x-1) + fib(x-2)

 solutions
 = []

 for number in [0..10]

 solutions.push (fib number)

 console.log
 solutions

The sample is the well known Fibonacci sequence, which we
would like to be translated into JavaScript.

Create a new gulpfile.js directly under the Fibonacci
folder, and run the following commands:

	npm init (This will generate the package.json file after you go through
the wizard.)

	npm install gulp --save-dev

	npm install gulp-coffee --save-dev

In the gulpfile.js file, enter the following:

Code Listing 24: gulpfile.js
for CoffeeScript demo - /gulpfile.js

 "use
 strict";

 var gulp = require('gulp'),

 coffee
 = require('gulp-coffee');

 gulp.task('coffee', function () {

 gulp.src('./Assets/Coffee/**/*.coffee')

 .pipe(coffee())

 .pipe(gulp.dest('./wwwroot/scripts'));

 });

 gulp.task('default', ['coffee']);

In a terminal window or DOS box, run the default Gulp task,
which will output the following JavaScript file under the wwwroot/scripts
folder as expected (as specified as parameter for gulp.dest):

Code Listing 25:
fibonacci.js - /wwwroot/scripts/fibonacci.js

 (function () {

 var fib, i, number, solutions;

 fib = function (x) {

 if (x < 2) {

 return x;

 } else {

 return fib(x - 1) + fib(x - 2);

 }

 };

 solutions = [];

 for (number = i = 0; i <= 10; number
 = ++i) {

 solutions.push(fib(number));

 }

 console.log(solutions);

 }).call(this);

If you do not like this style of output, then you can pass
in a parameter to the coffee call, like .pipe(coffee({ bare:true})).

This will then compile the fibonacci.coffee file into the
following JavaScript code:

Code Listing 26:
fibonacci.js with bare : true - /wwwroot/scripts/fibonacci.js

 var fib, i, number, solutions;

 fib
 = function (x) {

 if (x < 2) {

 return x;

 } else {

 return fib(x - 1) + fib(x - 2);

 }

 };

 solutions
 = [];

 for (number = i = 0; i <= 10; number
 = ++i) {

 solutions.push(fib(number));

 }

 console.log(solutions);

Some handling when an error occurs

Exceptions do happen, so it is better to keep them in mind
and act appropriately if needed. After all, an exception might break your
entire Gulp script, and Gulp plugins might respond to erroneous events.

For example, say you want to put some comment in the
CoffeeScript file as a small note to yourself of what the code is supposed to
do. You might write /* some comment */ in the
file. That is perfectly fine in JavaScript, but the CoffeeScript compiler returns
an error when performing its magic.

To make the code in Code Listing 24 more robust, we can
change it to:

Code Listing 27: gulpfile.js
with error event listener - /gulpfile.js

 "use
 strict";

 var gulp = require('gulp'),

 coffee
 = require('gulp-coffee');

 gulp.task('coffee', function () {

 gulp.src('./Assets/Coffee/**/*.coffee')

 .pipe(coffee({
 bare: true }).on('error', function (e) {

 console.log(e + '\r\n
 There\'s something wrong with the CoffeeScript file(s)');

 }))

 .pipe(gulp.dest('./wwwroot/scripts'));

 });

 gulp.task('default', ['coffee']);

Now open the fibonacci.coffee file. On top, write /* Fibonacci sequence */ and run the default Gulp task
again. We will see the following output:

Figure 23: When something goes wrong and we would like to
get notified

The output of the gulp-coffee
plugin now shows nicely where it goes wrong so you can quickly find out and
solve the problem.

TypeScript

TypeScript is a language developed by Microsoft, and just
like CoffeeScript, compiles to JavaScript. It is gaining a lot of interest and
momentum nowadays since the Angular.js team over at Google announced a close
collaboration. TypeScript has been chosen as the go-to language to write an
upcoming Angular.js-based application. As you can sense already, this will be
big in the coming years.

If you want to know more about TypeScript, I suggest you
take a look at this website, especially the Playground
section to see it at work. The example being used here is one of them.

Code Listing 28: inheritance.ts
- /Assets/TypeScript/inheritance.ts

 class
 Animal {

 constructor(public name: string) { }

 move(meters: number) {

 alert(this.name + " moved " + meters + "m.");

 }

 }

 class
 Snake extends Animal {

 constructor(name: string) { super(name); }

 move() {

 alert("Slithering...");

 super.move(5);

 }

 }

 class
 Horse extends Animal {

 constructor(name: string) { super(name); }

 move() {

 alert("Galloping...");

 super.move(45);

 }

 }

 var
 sam = new Snake("Sammy the Python");

 var
 tom: Animal = new Horse("Tommy the Palomino");

 sam.move();

 tom.move(34);

There are several plugins available to compile TypeScript
to JavaScript. I opted for gulp-typescript-compiler,
but you can try out any of the others.

Code Listing 29: gulpfile.js
for compiling TypeScript - /gulpfile.js

 var gulp = require('gulp'),

 ts
 = require('gulp-typescript-compiler');

 gulp.task('ts', function () {

 return gulp.src('./Assets/TypeScript/**/*.ts')

 .pipe(ts())

 .pipe(gulp.dest('./wwwroot/js'));

 });

 gulp.task('default', ['ts']);

This results in the following EcmaScript 5 code:

Code Listing 30: Compiled
JavaScript - /wwwroot/js/inheritance.js

 var __extends = this.__extends || function
 (d, b) {

 for (var
 p in b) if
 (b.hasOwnProperty(p)) d[p] = b[p];

 function __() { this.constructor = d; }

 __.prototype = b.prototype;

 d.prototype = new __();

 };

 var Animal = (function () {

 function Animal(name) {

 this.name = name;

 }

 Animal.prototype.move = function (meters) {

 alert(this.name + " moved " + meters + "m.");

 };

 return Animal;

 })();

 var Snake = (function (_super) {

 __extends(Snake, _super);

 function Snake(name) {

 _super.call(this, name);

 }

 Snake.prototype.move = function () {

 alert("Slithering...");

 _super.prototype.move.call(this, 5);

 };

 return Snake;

 })(Animal);

 var Horse = (function (_super) {

 __extends(Horse, _super);

 function Horse(name) {

 _super.call(this, name);

 }

 Horse.prototype.move = function () {

 alert("Galloping...");

 _super.prototype.move.call(this, 45);

 };

 return Horse;

 })(Animal);

 var sam = new Snake("Sammy the Python");

 var tom = new Horse("Tommy the Palomino");

 sam.move();

 tom.move(34);

Wow, I bet you didn’t want to write that yourself. You can
also pass in options in the ts call. Be sure to
check them out and play around with them to see what works for you, like
sourcemap generation, for example:

Code Listing 31: gulpfile.js
for compiling TypeScript with options - /gulpfile.js

 var
 gulp = require('gulp'),

 ts
 = require('gulp-typescript-compiler');

 gulp.task('ts',
 function() {

 return
 gulp.src('./Assets/TypeScript/**/*.ts')

 .pipe(ts({

 sourcemap:true,

 target:'ES3'

 }))

 .pipe(gulp.dest('./wwwroot/js'));

 });

 gulp.task('default',
 ['ts']);

This will generate a sourcemap file with the name inheritance.js.map
in the output folder wwwroot/js. It will also add the following line at the
bottom of the generated inheritance.js file to indicate the relationship
between both: //# sourceMappingURL=inheritance.js.map.

EcmaScript 6

EcmaScript 6 (ES6) is the new, upcoming version of
JavaScript. Since it is so new, most browsers do not support it yet (or at
least not fully). That’s a pity, as the things you can start doing with it are
pretty awesome. Luckily for developers, there is already a way to make use of
it and then transpile it to EcmaScript, 5 which current browsers understand all
too well. One example is making use of classes and inheritance—something
JavaScript as we knew it wasn’t particularly good at. Take the following ES6
sample:

Code Listing 32: ES6 file
inheritance.js - /Assets/ES6/inheritance.js

 class Shape {

 constructor(id, x, y) {

 this.id = id

 this.move(x, y)

 }

 move(x, y) {

 this.x = x

 this.y = y

 }

 }

 class Rectangle extends Shape {

 constructor(id, x, y, width, height) {

 super(id, x, y)

 this.width = width

 this.height = height

 }

 }

 class Circle extends Shape {

 constructor(id, x, y, radius) {

 super(id, x, y)

 this.radius = radius

 }

 }

 var c = new
 Circle('firstCircle', 3, 4, 5);

 console.log(c);

 c.move(10,
 20);

 console.log(c);

It has a class Shape, which
has a move function. Two other classes, Circle and Rectangle,
inherit from it. After the class declarations, there are four more lines, which
instantiate a new Circle object and pass in some
parameters to its constructor, which calls in its turn the base class constructor as well via the super()
call. To see the object itself, we write it to the console. Then we move the
circle object to some new x:y coordinates and write it again to the console.
Hey, this might be the start of a fun new game!

To transpile it to ES5, however, we need some help. There
is at the time of writing a Gulp plugin, and likely more are soon to follow
once ES6 takes off. Our Gulp file will look like this:

Code Listing 33: gulpfile.js
- /gulpfile.js

 var gulp = require('gulp'),

 es6
 = require('gulp-es6-transpiler');

 gulp.task('js:es6', function () {

 return gulp.src('./Assets/ES6/inheritance.js')

 .pipe(es6({
 'disallowUnknownReferences': true
 }))

 .pipe(gulp.dest('./wwwroot/js'));

 });

 gulp.task('default', ['js:es6']);

 	
 [image:]

 	
 Note: Before
you run the gulp task, make sure you have the gulp and gulp-es6-transpiler
packages installed.

The ES5 equivalent will be generated into the following
code. For the faint of heart, perhaps take a look at the next paragraph instead,
as it is not pretty.

Code Listing 34: ES5 file
inheritance.js of transpiling our ES6 inheritance.js file -
/wwwroot/js/inheritance.js

 var PRS$0 = (function (o, t) { o["__proto__"] = { "a": t }; return o["a"] === t })({}, {}); var DP$0 =
 Object.defineProperty; var GOPD$0 =
 Object.getOwnPropertyDescriptor; var MIXIN$0
 = function (t, s) { for (var p in
 s) { if (s.hasOwnProperty(p)) { DP$0(t, p,
 GOPD$0(s, p)); } } return t }; var
 SP$0 = Object.setPrototypeOf || function
 (o, p) { if (PRS$0) { o["__proto__"] = p; } else { DP$0(o, "__proto__", { "value": p, "configurable": true,
 "enumerable": false, "writable": true
 }); } return o }; var
 OC$0 = Object.create; var Shape = (function () {

 "use
 strict"; var proto$0 = {};

 function Shape(id, x, y) {

 this.id = id

 this.move(x, y)

 } DP$0(Shape, "prototype", { "configurable": false, "enumerable": false, "writable": false });

 proto$0.move = function (x, y) {

 this.x = x

 this.y = y

 };

 MIXIN$0(Shape.prototype, proto$0); proto$0 = void
 0; return Shape;

 })();

 var Rectangle = (function (super$0) {

 "use
 strict"; if (!PRS$0) MIXIN$0(Rectangle, super$0);

 function Rectangle(id, x, y, width, height)
 {

 super$0.call(this, id, x, y)

 this.width = width

 this.height = height

 } if (super$0 !== null) SP$0(Rectangle, super$0); Rectangle.prototype =
 OC$0(super$0 !== null ? super$0.prototype : null, { "constructor": { "value": Rectangle, "configurable": true,
 "writable": true
 } }); DP$0(Rectangle, "prototype", { "configurable": false, "enumerable": false, "writable": false });

 ; return Rectangle;

 })(Shape);

 var Circle = (function (super$0) {

 "use strict"; if
 (!PRS$0) MIXIN$0(Circle, super$0);

 function Circle(id, x, y, radius) {

 super$0.call(this, id, x, y)

 this.radius = radius

 } if (super$0 !== null) SP$0(Circle, super$0); Circle.prototype =
 OC$0(super$0 !== null ? super$0.prototype : null, { "constructor": { "value": Circle, "configurable": true,
 "writable": true
 } }); DP$0(Circle, "prototype", { "configurable": false, "enumerable": false, "writable": false });

 ; return Circle;

 })(Shape);

 var c = new
 Circle('firstCircle', 3, 4, 5);

 console.log(c);

 c.move(10,
 20);

 console.log(c);

Indeed, the ES6 style of writing that is much easier on
the eyes.

To test this transpiled file quickly in a browser, you can
open jsfiddle.net, paste the code in the
JavaScript pane, and run it. Open the F12 tools of your favorite browser and
take a look at the Console. The following screenshot shows the outcome of the
code:

Figure 24: Both Circle objects before and after the move
function call

Source maps

Source maps are a handy way to make a browser aware of
where the original files were for a certain resource like a JavaScript or CSS
file. We already saw a glimpse of it being used earlier in this chapter under
the TypeScript paragraph. There, it was an optional
setting. Not every Gulp plugin, however, has this out of the box. Luckily,
there is a dedicated Gulp plugin available to inject into the stream. Actually,
as we will see in a moment, it takes two points into the stream: one that does
the initialization, and another that does the writing.

We are going to make use of Sass for this example; be sure
to use npm install to get the gulp-sass package. Just like Less, this is a
popular CSS precompiler syntax that is gaining more popularity. The next
version of the famous Bootstrap library, for example, will be written with Sass,
while the current version makes use of Less. Note that Sass files have the
extension .scss. To make yourself familiar with the syntax of Sass, I encourage
you to take a look at this guide.

Code Listing 35: Styles.scss
- /Assets/Sass/styles.scss

 a.CoolLink {

 color: blue;

 &:hover {

 text-decoration: underline;

 }

 &:visited {

 color: green;

 }

 }

Code Listing 36: gulpfile.js
- /gulpfile.js

 var gulp = require('gulp'),

 sass
 = require('gulp-sass'),

 sourcemaps
 = require('gulp-sourcemaps');

 gulp.task('css', function () {

 return gulp.src('./Assets/Sass/**/*.scss')

 .pipe(sourcemaps.init())

 .pipe(sass({

 outputStyle: 'compressed'

 }))

 .pipe(sourcemaps.write())

 .pipe(gulp.dest('./wwwroot/css'));

 });

 gulp.task('default', ['css']);

This code listing does quite a bit, so let us examine the css task a bit closer. First, all Sass files are put
into the stream. Then the sourcemap gets
initialized. You can put this after the Sass pipe, but it is recommended to put
it before. Then the compilation of Sass into CSS performs its magic and the sourcemap gets written. In the current call, the
mapping will be written in the resulting CSS file, like the following:

Code Listing 37: Styles.css
with sourcemapping included in the file itself - /wwwroot/css/styles.css

 a.CoolLink{color:blue}a.CoolLink:hover{text-decoration:underline}a.CoolLink:visited{color:green}

 /*#
 sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiIiwic291cmNlcyI6WyJTdHlsZXMuY3NzIl0sInNvdXJjZXNDb250ZW50IjpbImEuQ29vbExpbmt7Y29sb3I6Ymx1ZX1hLkNvb2xMaW5rOmhvdmVye3RleHQtZGVjb3JhdGlvbjp1bmRlcmxpbmV9YS5Db29sTGluazp2aXNpdGVke2NvbG9yOmdyZWVufVxuIl0sImZpbGUiOiJTdHlsZXMuY3NzIiwic291cmNlUm9vdCI6Ii9zb3VyY2UvIn0= */

This works, but personally I like to keep the mapping in a
separate file. This can be done quite easily by just changing the call to the
write function like the following:

Code Listing 38: Adjusted
gulpfile.js to write the sourcemap to another file – gulpfile.js

 var gulp = require('gulp'),

 sass
 = require('gulp-sass'),

 sourcemaps
 = require('gulp-sourcemaps');

 gulp.task('css', function () {

 return gulp.src('./Assets/Sass/**/*.scss')

 .pipe(sourcemaps.init())

 .pipe(sass({

 outputStyle: 'compressed'

 }))

 .pipe(sourcemaps.write('../maps'))

 .pipe(gulp.dest('./wwwroot/css'));

 });

 gulp.task('default', ['css']);

After running the default Gulp task, this time another
subfolder will be created, maps, which will hold
the generated sourcemap file like this:

Figure 25: Styles.css and its corresponding Styles.css.map
file

Unlike with the inline mapping before, in Styles.css the
separate Styles.css.map file looks somewhat different. Also, the Styles.css now
only holds a short indication as to where the browser can find the mapping
file.

Code Listing 39:
Styles.css.map - /wwwroot/maps/styles.css.map

 {"version":3,"sources":["Styles.scss"],"names":[],"mappings":"AAAC,CAAC,SAAS,CACP,KAAK,CAAE,IAAK,CADJ,AAEP,CAAC,SAAS,MAAH,AAAS,CACb,eAAe,CAAE,SAAU,CADtB,AAGR,CAAC,SAAS,QAAD,AAAS,CACf,KAAK,CAAE,KAAM,CADN","file":"Styles.css","sourcesContent":["a.CoolLink
 {\n color: blue;\n &:hover {\n text-decoration:
 underline;\n }\n &:visited {\n color: green;\n }\n}"],"sourceRoot":"/source/"}

 	
 [image:]

 	
 Note: The
sourcemap file might look a bit different on your machine. Here you see \n,
which is return and newline on Mac OS X, while on Windows it will show \r\n
instead. Also, the order of the properties of the json file might be different,
but essentially the same information will be in there.

Code Listing 40: Styles.css
- /wwwroot/css/styles.css

 a.CoolLink{color:blue}a.CoolLink:hover{text-decoration:underline}a.CoolLink:visited{color:green}

 /*#
 sourceMappingURL=../maps/Styles.css.map */

To test this in the browser, add an HTML file under the wwwroot
folder with the following content:

Code Listing 41: index.html
- /wwwroot/index.html

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <meta charset="UTF-8">

 <title>Sourcemaps</title>

 <link rel="stylesheet" href="css/Styles.css">

 </head>

 <body>

 This is a cool link

 This is not a cool link

 </body>

 </html>

The output on the screen will come as no surprise. The
interesting part happens when you open the so-called F12 tools of your browser.
Open the Resource pane and see the mapping being made. Note that every
browser differs a bit in showing it, however.

Safari:

Figure 26: Sourcemaps in Safari

Chrome:

Figure 27: Sourcemaps in Chrome

Note that source mapping does not only apply to CSS, but
can also be used for JavaScript files compiled or transpiled from another
source file. Browsers can make use of this to show where some code came from
originally. We already saw a sample of JavaScript source maps previously in the
TypeScript section.

Restoring order

Loading in files to be processed by a specific task is
what Gulp makes a great tool. These files are being loaded in the same order
they are in the folder. That means that if you have files which need to be
outputted in a certain order in the resulting file, you will have to do some
manipulation. A situation where this might occur is the concatenation of a
bunch of CSS files. The order is very important in such a file, as it might
make your application look different from what you intended.

Take the following three small .css files and Gulp file:

Code Listing 42: /Assets/css/anotherstylewhichshouldbeattheend.css

 div {

 border:4px solid red;

 }

Code Listing 43: /Assets/css/something.css

 body {

 background-color: blue;

 }

Code Listing 44: /Assets/css/styles.css

 div {

 border:1px dashed green;

 background-color: green;

 }

Code Listing 45: /gulpfile.js

 var gulp = require('gulp'),

 concat = require('gulp-concat');

 gulp.task('css', function () {

 return gulp.src('./Assets/css/**/*.css')

 .pipe(concat('all.css'))

 .pipe(gulp.dest('./wwwroot/css'));

 });

 gulp.task('default', ['css']);

We have introduced here another Gulp plugin: gulp-concat. Be sure to have it installed it before
running the gulp command. What it does is
concatenate the stream into one file, all.css files in this particular case.
This makes it very easy to bundle scripts together and reduces the number of
files the browser needs to fetch.

The output of running the default Gulp task will result in
the following all.css file:

Code Listing 46: /wwwroot/css/all.css

 div{

 border:4px solid red;

 }

 body {

 background-color: blue;

 }

 div {

 border:1px dashed green;

 background-color: green;

 }

This is not exactly what we want, as the style which makes
the div borders red should become the last in
the file. We can do this in different ways; let us investigate just how.

Ordering via gulp.src

This is a pretty simple approach, as you do not have to
get another Gulp plugin. Actually, it is already in your code as gulp.src. Instead of simply filling in a glob like ./Assets/less/**/*.less to grab all the Less files
under Assets/less and its subfolders, it is possible to make an array with the
order of the files you want them in. Let us take the following example:

Code Listing 47: gulpfile.js
with ordering in gulp.src - /gulpfile.js

 var gulp = require('gulp'),

 concat
 = require('gulp-concat');

 gulp.task('css', function () {

 return gulp.src(['./Assets/css/styles.css', './Assets/css/**/*.css'])

 .pipe(concat('all.css'))

 .pipe(gulp.dest('./wwwroot/css'));

 });

 gulp.task('default', ['css']);

Be sure to have installed the packages gulp, gulp-concat, and gulp-order.

The output will now become the following after running the
default Gulp task:

Code Listing 48: /wwwroot/css/all.css

 div {

 border:1px dashed green;

 background-color: green;

 }

 div{

 border:4px solid red;

 }

 body {

 background-color: blue;

 }

The styles.css file was put as first in the ordering, and
while keeping the rest of the files in order of filename in the folder, the all.css
file gets generated.

Ordering with gulp-order

Even though ordering via gulp.src
works out, it makes it prone to change, and actually does two things: fetching
files and ordering them. That is not always desired from a separation of
concerns point of view. As such, it is better to make use of a dedicated Gulp
plugin: gulp-order, which gets introduced
in the following changed Gulp file.

Code Listing 49: gulpfile.js
with ordering via the gulp-order plugin

 var gulp = require('gulp'),

 order
 = require('gulp-order'),

 concat
 = require('gulp-concat');

 gulp.task('css', function () {

 return gulp.src('./Assets/css/**/*.css')

 .pipe(order(['styles.css', '*.css']))

 .pipe(concat('all.css'))

 .pipe(gulp.dest('./wwwroot/css'));

 });

 gulp.task('default', ['css']);

The output is the same, as in Code Listing 48.

Logging

Gulp.js is a task runner, which means it does all its
magic behind closed doors. You do not have real visual feedback like when
opening a browser and navigating to some page. At best, you get some default
output to a console window of what is going on. If you want more information,
then you will have to put it in yourself. We will take a look at a few different
ways to do this.

console.log

This is the “poor man’s” way of logging, and it works
without having to install some fancy plugin. In former chapters, we already saw
the usage of this, for example, in Code Listing 10.

gulp-util

This handy little plugin does more than just logging, so
be sure to check out the documentation
for an overview of all the options. It’s capable of making a good old “beep”
sound, and it facilitates showing colored messages on the screen. As an example,
take a look at the following code:

Code Listing 50: gulpfile.js
for gulp-util - /gulpfile.js

 var gulp = require('gulp'),

 gutil
 = require('gulp-util');

 gulp.task('log', function () {

 gutil.beep();

 gutil.log(gutil.colors.red.underline('Error'),
 'Something went
 terribly wrong...');

 gutil.log(gutil.colors.bgGreen('OK'), 'Everything went smooth.');

 });

 gulp.task('default', ['log']);

I cannot provide the “beep” sound in this book, but the
colored output looks like the following:

Figure 28: Colored output with gulp-util

 	
 [image:]

 	
 Note: There
are not that many colors available. gulp-util makes use of the Chalk npm
module. The colors can be found in the following table.

 	
 gulp-util colors

 	
 bold

 	
 dim

 	
 italic

 	
 underline

 	
 Inverse

 	
 black

 	
 strikethrough

 	
 red

 	
 green

 	
 yellow

 	
 blue

 	
 magenta

 	
 cyan

 	
 white

 	
 gray

 	
 bgBlack

 	
 bgRed

 	
 bgGreen

 	
 bgYellow

 	
 bgBlue

 	
 bgMagenta

 	
 bgCyan

 	
 bgWhite

 	

It’s possible to chain these colors together to get
another effect. As we saw in the demo gulpfile, underline was concatenated to
red, resulting in a red text that was underlined. Note that the underline might
not work on your machine, for example, in Windows, as not every terminal in Windows
allows for underlined text.

gulp-logger

This is a third logging helping component. Its purpose is
to log the progress of the current task for every item in the stream we are
providing to it. Take a look at the following Gulp file:

Code Listing 51: gulpfile.js
for gulp-logger - /gulpfile.js

 var gulp = require('gulp'),

 sass
 = require('gulp-sass'),

 logger
 = require('gulp-logger');

 gulp.task('css:sass', function () {

 gulp.src('./Assets/Sass/**/*.scss')

 .pipe(logger({

 before: 'Going to
 process Sass files...',

 after: 'Sass files
 were processed...',

 beforeEach: 'Processing...
 ',

 afterEach: ' ...Done'

 }))

 .pipe(sass())

 .pipe(gulp.dest('./wwwroot/css'));

 });

 gulp.task('default', ['css:sass']);

Through the means of options, we can manipulate how the gulp-logger module is going to behave. In this example
we use only four, but there are more that can come in handy. Be sure to check
out the documentation
of this component to read about those extra option settings.

The output can be seen in the following figure. Note the
colored messages. The colors option is set to true by default. You could turn it off if you wanted
to by setting it to false.

Figure 29: Output of the gulp-logger module with extra
options set

Cleaning up

Gulp is great at generating output, and overwrites output
from before. When setting up a Gulp architecture in your application,
you will likely test it on every step. This might end up giving output files in
the end which you might not need anymore or, or which just become ballast. Potentially,
you might integrate the leftovers in your real-life solution, degrading performance,
or worse, cause bugs.

As such, it’s a good practice to start up with a clean
slate and clean out the output folder and its subfolders before performing Gulp
magic. Usually this is done as a dependent task of the default task like:

gulp.task('default',
['clean','build','watch','connect']);

As we will find out, there are Gulp plugins available for
cleaning up. However, this is a good case to show that it’s not always the
trivial plugin you want to make use of. The trivial one in this case would be gulp-clean. When we take a look at its documentation, we will see
the message:

Deprecated use gulp-rimraf
instead!

Ok, following that link, we open the documentation page of gulp-rimraf. There we see the following message:

Deprecated in favor of https://github.com/gulpjs/gulp/blob/master/docs/recipes/delete-files-folder.md

So we end up with the del
module from node.js directly. The showcase of
this is that even though every day there are new plugins being made for Gulp,
there are also existing plugins being removed in favor of better ones. Finding
these might be a bit of a challenge in the beginning, but you will soon find
the good ones that work out for you.

Using the del module in
your Gulp file is easy, as you can see in the following demo, where we have a wwwroot
folder with css and js subfolders with files in them.

Figure 30: Project overview before cleaning

We only want to remove the files and their folders under css
and js, but not the config.json file, as that might hold important information.
We can make an exception while deleting everything by putting a ! in front of the path to exclude the file.

Code Listing 52: gulpfile.js
cleaning - /gulpfile.js

 "use
 strict";

 var gulp = require('gulp'),

 del
 = require('del');

 gulp.task('clean', function () {

 return del(['./wwwroot/css', './wwwroot/js', '!./wwwroot/config.json']);

 });

 gulp.task('build', function () {

 console.log('Building
 stuff - using less and coffeescript');

 });

 gulp.task('default', ['clean', 'build']);

Note from this sample that we do not make use of gulp.src as we have seen so many times before. We
directly call the del module and pass in an
array of paths to delete: all with the exception of the config.json file. After
running the default task, we keep the following structure in our project:

 Figure 31: Project after having cleaned out the wwwroot
folder

Load plugins dynamically

So far, we have been writing require
statements at the top of each of our Gulp files. That list might become pretty
long when you’re adding a lot of plugins. For example, the following is not an
exception:

Code Listing 53: A lot of
require statements - /gulpfile.js

 var gulp = require('gulp'),

 del = require('del'),

 less = require('gulp-less'),

 path = require('path'),

 autoprefixer = require('gulp-autoprefixer'),

 sourcemaps = require('gulp-sourcemaps'),

 concat = require('gulp-concat'),

 order = require('gulp-order'),

 filesize = require('gulp-filesize'),

 uglify = require('gulp-uglify'),

 rename = require('gulp-rename'),

 minify = require('gulp-minify'),

 connect = require('gulp-connect'),

 jshint = require('gulp-jshint'),

 jade = require('gulp-jade'),

 minifyCss = require('gulp-clean-css'),

 coffee = require('gulp-coffee');

That might even become more cumbersome when you start
adding additional plugins. There is, however, an alternative way, one that
reduces this listing tremendously by making use of a Gulp plugin. The following
listing shows the usage of the gulp-load-plugins
plugin.

Code Listing 54: Reducing it
to loading plugins lazily - /gulpfile.js

 var gulp = require('gulp'),

 gulpLoadPlugins = require('gulp-load-plugins'),

 plugins = gulpLoadPlugins();

The secret is in the fact that the plugins are known in
the package.json file and installed via npm. So when we have the following
package.json:

Code Listing 55: /package.json

 {

 "name": "d",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\"
 && exit 1"

 },

 "author": "",

 "license": "ISC",

 "devDependencies": {

 "gulp": "^3.9.0",

 "gulp-less": "^3.0.3",

 "gulp-load-plugins": "^0.10.0",

 "gulp-sass": "^2.0.4",

 "gulp-util": "^3.0.6"

 }

 }

We can then refactor a gulpfile.js file to make use of the
plugins variable:

Code Listing 56: gulpfile.js
loading plugins in a lazy fashion - /gulpfile.js

 var gulp = require('gulp'),

 gulpLoadPlugins = require('gulp-load-plugins'),

 plugins = gulpLoadPlugins();

 gulp.task('css:less', function () {

 return gulp.src('./b.less')

 .pipe(plugins.less())

 .pipe(gulp.dest('./'));

 });

 gulp.task('css:sass', function () {

 return gulp.src('./c.scss')

 .pipe(plugins.sass())

 .pipe(gulp.dest('./'));

 });

 gulp.task('default', function () {

 return plugins.util.log('Gulp is running!')

 });

Instead of writing less(), we
then write plugins.less() to make it work.

Summary

This chapter covered several small but handy samples, which
you can reuse in your own projects. Be sure to play around with the options of
each plugin and experiment to see what works out best for your project.

Chapter 5 Gulp in Visual Studio

Introduction

Visual Studio 2015 has recently been released; it’s a
great upgrade in a line of successful IDE’s over the years by Microsoft. It’s
great to see that the team behind ASP.NET has also opted for Gulp as their task
runner of choice.

Bundling and minification

In former versions of ASP.NET, we were introduced to the
System.Web.Performance namespace, which helped out to minify and bundle CSS and
JavaScript files. The benefit in doing this is making the size of the files smaller
through minification. By bundling files together into one file, the number of
concurrent files to be downloaded is also reduced. That is good news as
browsers only allow a small amount of these at the same time. I always found this
article to be a good introduction into this specific subject. Take some
time to read it after you have finished this book.

ASP.NET 5

ASP.NET 5 is going to be the first version by Microsoft
that will run cross-platform, meaning that your code will also be able to run
on a Mac or on a Linux-based distribution. That’s a pretty big thing, and a
complete shift with the past. At the moment of writing this book, ASP.NET 5 was
still in beta, so perhaps some things might still change. Be sure to keep an
eye on the release notes of ASP.NET 5 when it ships to see what’s inside the
box and what isn’t, or how to make use of things. The rest of this chapter is
based on how it works with ASP.NET 5 Beta 8.

Grunt

When the first beta templates shipped, they came with Grunt.
Grunt is also a JavaScript-based task runner, just like Gulp. It’s older, however,
and its use of plugins is a bit slower than Gulp’s. The main reason for this is
that it doesn’t make use of the pipe stream like Gulp does. Instead, Grunt
saves to disk after every plugin "step." Grunt is still very popular
though, so you might encounter it with projects you are going to be assigned
to.

The following code listing shows a possible Grunt file;
it’s been taken from the documentation pages directly.

Code Listing 57:
gruntfile.js - /gruntfile.js

 module.exports
 = function (grunt) {

 grunt.initConfig({

 pkg: grunt.file.readJSON('package.json'),

 concat: {

 options: {

 separator: ';'

 },

 dist: {

 src: ['src/**/*.js'],

 dest: 'dist/<%=
 pkg.name %>.js'

 }

 },

 uglify: {

 options: {

 banner: '/*! <%=
 pkg.name %> <%= grunt.template.today("dd-mm-yyyy") %>
 */\n'

 },

 dist: {

 files: {

 'dist/<%= pkg.name
 %>.min.js': ['<%= concat.dist.dest %>']

 }

 }

 },

 qunit: {

 files: ['test/**/*.html']

 },

 jshint: {

 files: ['Gruntfile.js', 'src/**/*.js', 'test/**/*.js'],

 options: {

 // options here to
 override JSHint defaults

 globals: {

 jQuery: true,

 console: true,

 module: true,

 document: true

 }

 }

 },

 watch: {

 files: ['<%=
 jshint.files %>'],

 tasks: ['jshint', 'qunit']

 }

 });

 grunt.loadNpmTasks('grunt-contrib-uglify');

 grunt.loadNpmTasks('grunt-contrib-jshint');

 grunt.loadNpmTasks('grunt-contrib-qunit');

 grunt.loadNpmTasks('grunt-contrib-watch');

 grunt.loadNpmTasks('grunt-contrib-concat');

 grunt.registerTask('test', ['jshint', 'qunit']);

 grunt.registerTask('default', ['jshint', 'qunit', 'concat', 'uglify']);

 };

As you can see, Grunt files might become large pretty
quickly compared with Gulp files, due to all kinds of configuration settings.

Gulp

During the development of ASP.NET 5, the community asked
Microsoft to replace Grunt with Gulp. This was for various reasons: it’s a faster,
better, upcoming technology that is getting more followers every day, and has a
healthy plugin ecosystem. Over the past years, Microsoft, and especially the
team behind ASP.NET, has embraced an open source approach, and is actively
listening to its user base.

Grunt code vs. Gulp code

Grunt is all about configuration over coding, while Gulp
is all about configuration through code. This next example will show the same
tasks to be run, but both written in their respective flavor.

Code Listing 58: gruntfile.js
- /gruntfile.js

 module.exports
 = function (grunt) {

 grunt.initConfig({

 less: {

 development: {

 files: {

 "wwwroot/css/app.css": "Assets/*.less"

 }

 }

 },

 autoprefixer: {

 options: {

 browsers: ['last 2
 version']

 },

 single_file: {

 src: 'wwwroot/css/app.css',

 dest: 'wwwroot/css/single_file.css'

 },

 }

 });

 grunt.loadNpmTasks('grunt-contrib-less');

 grunt.loadNpmTasks('grunt-autoprefixer');

 grunt.registerTask('css:less', ['less', 'autoprefixer']);

 };

Code Listing 59: gulpfile.js
- /gulpfile.js

 var gulp = require('gulp'),

 less = require('gulp-less'),

 prefix = require('gulp-autoprefixer')

 gulp.task('css:less', function () {

 gulp.src('./Assets/*.less')

 .pipe(less())

 .pipe(prefix({ browsers: ['last 2 versions'], cascade: true }))

 .pipe(gulp.dest('./wwwroot/css/'));

 });

You can see that Grunt files can become big pretty fast,
and might need some considerable configuration steps. Gulp is fast, easy to
write, and easy to understand with less syntax. On top of that, Gulp is seeing
an increase in new plugins almost every day, making it a great tool to have on
your belt.

Editors

The most-known editor from Microsoft is Visual Studio, currently
branded Visual Studio 2015. There is a free community version available, and
for heavy enterprise development and architectures, you might want to opt into
using the full blown flagship version: Visual Studio 2015
Enterprise edition.

A little less known is the freely available Visual Studio
Code edition. This is not just a trimmed-down version of Visual Studio 2015,
but a separate editor. The best part is that there is a version for each of the
three major OS platforms available: Windows, Mac OS X, and Linux.

Figure 32: Visual Studio Code on Mac OS X

File New project

This time, we are moving to a machine that has Windows and
Visual Studio 2015
installed. There are different flavors available, like the free community
version up through the Enterprise edition.

After starting up Visual Studio 2015 (Figure 33), either
make use of the menu and select File > New Project, or click New
Project under Start on the first page you see after opening Visual
Studio 2015.

Figure 33: Visual Studio 2015 Start Screen

From the modal window that appears next (Figure 34),
select ASP.NET Web Application. Give it a meaningful name and select a
path on your machine. Make sure that the option Create directory for
solution is checked.

Figure 34: Select ASP.NET Web Application

After clicking the OK button, you will see a window
like the one in Figure 35. Select from the ASP.NET 5 Preview Templates the
third option, Web Application. Click OK.

Figure 35: Select an ASP.NET template to start from

Visual Studio 2015 will now create a new solution based on
the chosen template. When you open the Solution Explorer in Visual Studio 2015,
you will see something similar to the following:

Figure 36: The newly created solution

In the root of the project GulpInVS, you can see
that the file gulpfile.js is also added to the solution. It already has some
initial code set up for your convenience. We will see that next.

What’s already there out of the box

After creating a new ASP.NET 5 web application, there is
already a gulpfile.js in the solution with the following content:

Code Listing 60: gulpfile.js
content of a newly created ASP.NET 5 application - /gulpfile.js

 ///
 <binding Clean='clean' />

 var gulp = require("gulp"),

 rimraf = require("rimraf"),

 concat = require("gulp-concat"),

 cssmin
 = require("gulp-cssmin"),

 uglify = require("gulp-uglify"),

 project = require("./project.json");

 var paths = {

 webroot: "./" + project.webroot + "/"

 };

 paths.js
 = paths.webroot + "js/**/*.js";

 paths.minJs
 = paths.webroot + "js/**/*.min.js";

 paths.css
 = paths.webroot + "css/**/*.css";

 paths.minCss
 = paths.webroot + "css/**/*.min.css";

 paths.concatJsDest
 = paths.webroot + "js/site.min.js";

 paths.concatCssDest
 = paths.webroot + "css/site.min.css";

 gulp.task("clean:js", function (cb) {

 rimraf(paths.concatJsDest,
 cb);

 });

 gulp.task("clean:css", function (cb) {

 rimraf(paths.concatCssDest, cb);

 });

 gulp.task("clean", ["clean:js", "clean:css"]);

 gulp.task("min:js", function () {

 gulp.src([paths.js, "!" + paths.minJs], { base: "." })

 .pipe(concat(paths.concatJsDest))

 .pipe(uglify())

 .pipe(gulp.dest("."));

 });

 gulp.task("min:css", function () {

 gulp.src([paths.css, "!" + paths.minCss])

 .pipe(concat(paths.concatCssDest))

 .pipe(cssmin())

 .pipe(gulp.dest("."));

 });

 gulp.task("min", ["min:js", "min:css"]);

A quick glance at the former Gulp file shows us that in
the beginning, the definitions of Gulp and
different plugins are being made (rimraf, concat, cssmin and uglify). We also see something peculiar:

project
= require("./project.json");

Since node.js v0.5.2 was released, it’s become possible to
load and cache .json files into a variable through require.
This gives the benefit that configuration can be placed in another file. In this
case, project.json.

The next thing in the Gulp file is a declaration of paths
to make it easy to change throughout the rest of the Gulp file when needed at
one convenient place. Note the project.webroot
usage. webroot is parameter of the project.json
file that we loaded in earlier.

The first three tasks we see are involved in cleaning out
folders, one for CSS, and one for JavaScript. Note that both have a callback
variable passed in, cb, to notify the calling
task that their job has finished after they are run.

The next and last three tasks are all about concatenation and
minification of JavaScript and CSS files. Note that it does not make use of
globbing, but specifically handles one file. In particular, site.js and site.css.

project.webroot comes from the
project.json file, which got loaded via the require
statement. In that file, the definition is as follows: "webroot":
"wwwroot". This is a new subfolder in ASP.NET 5 where
all static items are put that need to be publicly available when published to a
server or to the cloud. This particular setting holds a bit of significance, as
it is also displayed in another window. You can see it by right-clicking the
web project in the Solution Explorer and selecting Properties. That will
open the window shown in Figure 37:

figure 37: The Web root parameter

Strangely enough, one can not change it in this screen,
but only alter it in the project.json file.

Working with Gulp in ASP.NET 5 and Visual Studio
2015

Visual Studio has been known for years to be a great IDE.
One of the reasons is the word “visual” in Visual Studio: developers can make
use of menus or dedicated windows or panes to accomplish a task. Up until now in
this book, we have run Gulp from a console window. That does not really
correspond with the way that developers are used to from working in Visual
Studio.

For Gulp, there is a dedicated pane in Visual Studio,
which can be reached in several ways:

	Through the menu: First select the gulpfile.js file in the
Solution Explorer and then go to Tools > Task Runner Explorer.

	Right-click on the gulpfile.js in the Solution Explorer,
and from the context menu, select Task Runner Explorer.

Figure 38: Open Task Runner Explorer

Once either of these methods have been used to open the
Task Runner Explorer, we can see that there is already a binding for the Clean
action:

Figure 39: Task Runner Explorer

On the left side, we get to see the Gulpfile.js with the Gulp
icon and underneath, the different, six tasks we saw in Code Listing 59. On the
right side, we get to see some bindings. This is somewhat different than what
we are used to so far, and is typical in Visual Studio.

The only binding we see now is the Clean binding, which,
once executed, will run the Gulp clean task. To
achieve this, make use of the menu and select Build > Clean
Solution.

Figure 40: The Gulp clean task has run.

An alternative way to run the same task would be to right-click
on the task in the left pane and select Run.

Figure 41: Running the Gulp clean task directly

When you take a look again at Code Listing 60, you will
see the following line at the top of the file:

/// <binding Clean='clean' />

That looks familiar, and yes, this line makes up for the
tooling being able to bind tasks to a binding in Visual Studio’s Task Runner
Explorer. In this specific case, it binds the Gulp clean
task to the Clean binding. You can easily test this by taking out the line in
the gulpfile.js file, saving it, and opening the Task Runner Explorer again.
The binding will have disappeared. By putting it back in in the gulpfile.js
file and saving it, the binding will be restored.

You can add new bindings by changing the gulpfile.js file
or by right clicking a Gulp task in the Task Runner Explorer and from the
context menu choosing Bindings > and selecting one of the following
four possibilities:

Table 1: Bindings in Visual
Studio’s Task Runner Explorer

 	
 Bindings

 	
 Before Build

 	
 Runs a Gulp task before the build process has started

 	
 After Build

 	
 Runs a Gulp task after the build process has finished

 	
 Clean

 	
 Runs a Gulp task when a Clean Solution has been performed

 	
 Project Open

 	
 Runs a Gulp task when the project is opened by Visual
 Studio

Figure 42: Adding a binding to a Gulp task in Task Runner
Explorer

Watching changes with Gulp in Visual Studio

What we saw in the former paragraph can be used to answer
a question I got during the Web European
Conference 2015 while presenting about Gulp: How do you watch files and
run tasks when they change while using Visual Studio?

The answer can be seen by following some simple steps. We
will be using gulp-sass to translate Sass files
into corresponding CSS files. For that, create two Sass files underneath wwwroot/css/.

Code Listing 61:
AnotherOne.scss

 @mixin border-radius($radius) {

 -webkit-border-radius: $radius;

 -moz-border-radius: $radius;

 -ms-border-radius: $radius;

 border-radius: $radius;

 }

 .box { @include border-radius(10px);
 }

Code Listing 62: Styles.scss

 @import "AnotherOne.scss";

 a.CoolLink {

 color: greenyellow;

 &:hover {

 text-decoration: underline;

 }

 &:visited {

 color: green;

 }

 }

Code Listing 63: gulpfile.js

 ///
 <binding Clean='clean' ProjectOpened='watch' />

 var gulp = require("gulp"),

 sass = require('gulp-sass'),

 project = require("./project.json");

 var paths = {

 webroot: "./" + project.webroot + "/"

 };

 paths.js
 = paths.webroot + "js/**/*.js";

 paths.sass
 = paths.webroot + "css/**/*.scss";

 paths.sassToCss
 = paths.webroot + "css";

 gulp.task("css:sass", function () {

 gulp.src(paths.sass)

 .pipe(sass())

 .pipe(gulp.dest(paths.sassToCss));

 });

 gulp.task('watch', function () {

 gulp.watch(paths.sass, ['css:sass']);

 });

The gulpfile.js file is pretty much trimmed down to show
the means to accomplish the task. The needed require
statements are made and the paths set up. Two tasks are created: one css:sass to do the heavy lifting of translating the
.scss files into .css files, and the watch task.
This one will run the css:sass task whenever it
sees a change in one of the .scss files under the wwwroot/css folder.

This is not something new, as we already discussed a
similar approach in Chapter 3. The new part is the way that Visual Studio
reacts. At the top of the gulpfile.js file, you can see the following line:

/// <binding Clean='clean' ProjectOpened='watch' />

That first part is familiar, as we saw it in the former example.
With the tooling discussed before, the watch
task has been coupled to the Project Open binding in the Task Runner Explorer,
as shown in Figure 43.

Figure 43: Gulp task watch coupled to Project Open binding

You can now either start the watch
task manually or close Visual Studio. Open Visual Studio again and reopen the
project. Directly after opening the project, take a look at the Task Runner
Explorer. You will see that the watch task has
run. Now, whenever you change an .scss file under the wwwroot/css folder, the css:sass task will be run when you save the changed
file. Figure 44 shows the output of that in the Task Runner Explorer pane.

Figure 44: Watch task has run on opening the project, and
after each save of an .scss file when it was changed.

Now now we have achieved the same as when we were using
the simple console window, like in Chapter 3. This makes our development
efforts in Visual Studio even more pleasant to code in.

The outcome to the Styles.css after some changes may look
like the following listing:

Code Listing 64: Styles.css

 .box {

 -webkit-border-radius: 10px;

 -moz-border-radius: 10px;

 -ms-border-radius: 10px;

 border-radius: 10px;
 }

 a.CoolLink {

 color: lawngreen; }

 a.CoolLink:hover {

 text-decoration: underline; }

 a.CoolLink:visited {

 color: green; }

Upgrade version scripts and CSS with Gulp

Up until now, we have mainly seen how to make use of Gulp
to bundle, minify, and translate scripts and CSS. Those are great features, and
it takes away a lot of manual work from developers. We included the outcome of
these directly into our HTML files and sent them to the browser to perform
their job.

While developing, you actually will write code. Code that
you might build, bundle, or minify continuously during that process of crafting
the next great application. Making these updates will result in new files in
the end, which we will want to include in our pages. Browsers, however, try to
cache as much of the static content as possible. That’s what is wanted during
the production cycle of your application, as you will see way fewer requests
hitting your server, and as such, saving resources on it. During development or
an upgrade of your deployed application on production, you will likely want to
inform the browsers that they need to ignore the cached version they have and
fetch the latest version.

There are several techniques, and the most common ones are
to either put a version number inside the name of the file, or to add a unique
querystring behind it to make it unique as a whole.

Because this is requested quite often, there are different
Gulp plugins available that try to solve this common problem.

With the help of the plugin gulp-inject,
we can accomplish our task. In the ASP.NET MVC application we made use of
earlier (or a new one), we can adjust the _Layout.cshtml file by putting
the following in the <head> section of
that Razor page.

Code Listing 65:
_Layout.cshtml head part

 <head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>@ViewData["Title"] - GulpInVSWatch</title>

 <!-- inject:css
 -->

 <!-- endinject
 -->

 </head>

In order to have it to work, we need to make up our
gulpfile.js file like the following code snippet:

Code Listing 66: gulpfile.js
for gulp-inject

 var gulp = require("gulp"),

 inject = require('gulp-inject');

 gulp.task("inject", function () {

 var target = gulp.src('./Views/Shared/_layout.cshtml');

 var sources = gulp.src('./wwwroot/css/**/*.css');

 return target

 .pipe(inject(sources))

 .pipe(gulp.dest('./Views/Shared/'));

 });

This small piece of Gulp code does its magic in the inject task. It grabs the target file, in our case
_Layout.cshtml. In this case, the sources will be all the .css files we can
find in the subfolder wwwroot/css, and will get placed between the specially
made up comment lines in the head section of the _Layout.cshtml file.

The next lines take the target file, inject the sources
and write out the altered _Layout.cshtml file back to its original place under
Views/Shared/.

The result of this operation can be seen in the following
code listing. In the sample solution, I had three different .css files, which
got all injected:

Code Listing 67: Result
after injecting three .css files with gulp-inject

 <head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>@ViewData["Title"] - GulpInVSWatch</title>

 <!-- inject:css
 -->

 <link rel="stylesheet" href="/wwwroot/css/AnotherOne.css">

 <link rel="stylesheet" href="/wwwroot/css/site.css">

 <link rel="stylesheet" href="/wwwroot/css/Styles.css">

 <!-- endinject
 -->

 </head>

This is working out nicely, but it’s not the full
experience we were hoping for. Remember the versioning condition we talked
about earlier in the paragraph? Well, it’s time to tackle that one as well.
Luckily, there is no need for another Gulp plugin. The gulp-inject
plugin has quite a few options that we can make use of and manipulate what is
being injected.

From within a DOS box of the terminal window, we would now
perform a npm install gulp-inject --save-dev
command to get the package from npm so we can make use of it. In Visual Studio,
it’s a bit different.

Open the package.json file and edit it. The great
thing about Visual Studio is that it provides IntelliSense, also when editing
the package.json file. In the devDependencies
part, add a new line for gulp-inject. In the
Solution Explorer, right-click on the npm node and select Restore
packages.

Open the package.json file, as shown in Figure 45.
You can add an extra line for gulp-inject and
get IntelliSense for both the package name and the version. Now that is handy,
no?

Figure 45: IntelliSense while editing package.json

It could well be that you already got an update of Visual Studio that loads
the npm package automatically. If you didn’t, then you can take the next, easy
step as shown in Figure 46:

Figure 46: Restoring packages in Visual Studio

Change the gulpfile.js file accordingly to:

Code Listing 68: gulpfile.js
to transform the injected files and add a querystring

 var gulp = require("gulp"),

 inject = require('gulp-inject');

 gulp.task("inject", function () {

 var target = gulp.src('./Views/Shared/_layout.cshtml');

 var sources = gulp.src('./wwwroot/css/**/*.css');

 var ticks = new Date().getTime();

 return target

 .pipe(inject(sources, {

 transform: function (filepath) {

 arguments[0] = filepath + '?v=' +
 ticks;

 return
 inject.transform.apply(inject.transform, arguments);

 }

 }))

 .pipe(gulp.dest('./Views/Shared/'));

 });

Here we added an extra option to transform the filepath.
It’s getting suffixed with ?v= and the number of
ticks that we have filled up before the transformation with the amount of ticks
of the current date. After this injection, the end result will look a bit
different than before:

Code Listing 69: Result
after injecting three .css files with gulp-inject and with added querystring

 <head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 <title>@ViewData["Title"] - GulpInVSWatch</title>

 <!-- inject:css
 -->

 <link rel="stylesheet" href="/wwwroot/css/AnotherOne.css?v=1448220822909">

 <link rel="stylesheet" href="/wwwroot/css/site.css?v=1448220822909">

 <link rel="stylesheet" href="/wwwroot/css/Styles.css?v=1448220822909">

 <!-- endinject
 -->

 </head>

This results in what we wanted from the beginning. Thanks
to the transform option of the gulp-inject
plugin, it becomes quite easy to manipulate the outcome of the injected
filenames. Now couple this with the After Build binding in Visual Studio’s Task
Runner Explorer, and you have a solid developer experience.

Summary

This chapter gave a good overview of the possibilities in
working with Gulp in Visual Studio, the new Task Runner Explorer, and the way
your Gulp tasks can be coupled to bindings to perform the heavy manual tasks
you encounter while developing. We have also seen two dedicated solutions of
common problems developers have while working with Visual Studio. These
solutions were inspired by the questions I got after my presentation about Gulp
at Web European Conference 2015 in Milan.

Chapter 6 The future looks bright

Gulp 4

In Figure 3, we saw that the current version of Gulp was
3.9.0. This version was used throughout this book as well. In IT, and
especially the internet, such versions don’t stay very long. Gulp 4 is already
on the horizon, and might even be the current version by the time you start
reading this book. No worries—we have you covered. You will notice that much
will stay the same, while some things become easier to grasp. You will also
gain more control over the way Gulp runs its tasks.

The four APIs

In case you were becoming afraid that something might
change, you are in luck. The API of Gulp 4 remains the same as what we used in
the previous version, so the following are still valid to make use of:

	task

	src

	dest

	watch

The syntax of the task function
changes a bit, however:

	Gulp 3: gulp.task(name [, dependent
tasks], fn)

	Gulp 4: gulp.task(name, fn)

We will see a bit further in this chapter what fn can do in Gulp 4.

If you want to keep up to date with what might still be
changing (or being added), be sure to check out the Gulp changelog.

How Gulp runs tasks

Orchestrator

In Gulp 3, we noticed that we can write task dependencies
in an easy way, like the following: ['css:less', 'script:typescript']. This would result in those dependent
tasks running in a maximum possible concurrency. Behind the scenes, Gulp will
make a dependency tree and orchestrate the exact running of the tasks, in
order. Code Listing 12 showed this. For the sake of continuous reading, we will
repeat that listing:

Code Listing 12: Running a task from different places

 "use
 strict";

 var gulp = require('gulp');

 gulp.task('clean', function () {

 console.log('Cleaning
 up...');

 });

 gulp.task('task1', ['clean'], function () {

 console.log('Task 1
 is executing...');

 });

 gulp.task('task2', ['clean'], function () {

 console.log('Task 2
 is doing its thing...');

 });

 gulp.task('build', ['task1', 'task2']);

 gulp.task('default', ['build'], function () {

 console.log('default
 task...');

 });

The clean task will be
executed only once, even though it was referenced as a dependent task of both task1 and task2.
Orchestrator makes sure that it happens like that, and the clean task does not get called twice. If it were
called twice, or even more, then some task might cause havoc by cleaning out
the results of another task that had already made the clean
task run. That is a situation you do not want to happen.

Series and parallels

With the usage of Orchestrator, things will run for you in
the order that it makes up the dependency tree, but that might feel a bit like magic.
Things are running without you having much control over it. You can give Gulp hints
to run in a certain way, thanks to the usage of dependent tasks, but still it
feels a bit like you do not have everything under control.

Gulp 4 addresses this. as people wanted to have more
control over what will run, and when. As such, the Orchestrator has been set
aside, and two new execution functions have been introduced:

	Gulp.series: Used for sequential
execution

	Gulp.parallel: Used for parallel
execution

Both accept parameters that are the:

	Task name to execute

	Function to execute

By combining these, you can make up execution orders as
complex as you need them to be. Be advised, though, that keeping it simple is
still a good thing, as overly complex systems tend to become hard to debug and
maintain.

We mentioned before that in Gulp 4, the task API will look
somewhat different: gulp.task(name, fn).

fn can be a series,
parallel, a combination of series and parallel, or a function.

Writing a task that you want to have run in parallel, like
transforming Less to CSS and TypeScript to JavaScript, might look like this:

Code Listing 70: Gulp.parallel

 gulp.task('default', gulp.parallel('css:less', 'js:typescript'));

Take another look at Code Listing 12 and try to rewrite
that with the new syntax, like the following:

Code Listing 71: Code Listing
12 rewritten with Gulp 4

 "use
 strict";

 var gulp = require('gulp');

 gulp.task('clean', function () {

 console.log('Cleaning
 up...');

 });

 gulp.task('task1', function () {

 console.log('Task 1 is executing...');

 });

 gulp.task('task2', function () {

 console.log('Task 2
 is doing its thing...');

 });

 gulp.task('build', gulp.series('clean', gulp.parallel('task1', 'task2')));

 gulp.task('default', gulp.series('build'));

The syntax looks pretty much the same, except that we
introduced the gulp.series and gulp.parallel function calls. One very important thing
to notice is the call for the clean task; it’s
been taken out as a dependency of both task1 and
task2. These two are allowed to run in parallel,
but as in Gulp 4, we do not have Orchestrator available anymore. This would
lead to the clean task being run twice, which we
need to avoid at all costs.

A diagram might illustrate this in a more intuitive way.
An extra series step was added after the parallel call to show that this is
also possible.

Figure 47: Series and parallel tasks in Gulp 4

npm

npm as a build tool? Up until now, we saw npm being used
to download and manage Gulp plugins. Well, there are articles online to be
found of people making sole use of npm to do all the stuff we talked about in
this book. This could become a new way of doing things in the ever-changing
world. For the moment, Gulp is still a great and emerging tool, and the
adoption by Microsoft also indicates its importance.

HTTP 2

Up until now, web developers made a lot of effort to
minimize and concatenate scripts or CSS files. With HTTP 2, that will no longer
be necessary. According to some sources, it might even be counterproductive to
do so, and harm performance. As such, you will likely need to revise your
crafted Gulp files to keep up with progressing web technology and protocols to
squeeze the maximum performance out of your applications.

Modern browsers (also often called “evergreen” browsers, as
they are always up to date), already support HTTP 2. Server software is quickly
jumping onto the bandwagon as well, and in the next years we will see support
everywhere for this improved protocol, so be sure to keep your applications
closely monitored for this.

Summary

This was a shorter chapter, as it is difficult to predict
the future. We can, however, foresee that HTTP 2 will quickly become big over
the next years. There will be an increase in the number of (web) applications,
and we will see them in different shapes, like packaged as an app on a smart
device, with things like Ionic, Cordova, and manifold.js.

I hope you enjoyed reading this book.

Appendix
Resources

	Source
for the color palettes used in Chapter 3

	Source for
the Chapter 3 Fibonacci CoffeeScript

Detailed Table of Contents

About the
author

Preface

Code samples

How to
contact me

Chapter 1 Go
Gulp

Introduction

Gulp stream
flow

Four APIs to
rule them all

gulp.src()

gulp.dest()

gulp.task()

gulp.watch()

npm and
Node.js

Chapter 2
Let’s build something

Installing
Gulp

How to
install plugins

gulpfile.js

Default task

Options

Other tasks

Task
dependencies

Summary

Chapter 3
Watching updates

Watching a
file

Watching a
folder

New files in
the folder, what now?

Live reload
your browser

Summary

Chapter 4
Handy little tasks

Script
translation

CoffeeScript

TypeScript

EcmaScript 6

Source maps

Restoring
order

Ordering via
gulp.src

Ordering
with gulp-order

Logging

console.log

gulp-util

gulp-logger

Cleaning up

Load plugins
dynamically

Summary

Chapter 5
Gulp in Visual Studio

Introduction

Bundling and
minification

ASP.NET 5

Grunt

Gulp

Editors

File New
project

What’s
already there out of the box

Working with
Gulp in ASP.NET 5 and Visual Studio 2015

Watching
changes with Gulp in Visual Studio

Upgrade
version scripts and CSS with Gulp

Summary

Chapter 6
The future looks bright

Gulp 4

The four
APIs

How Gulp
runs tasks

Orchestrator

Series and
parallels

npm

HTTP 2

Summary

Appendix A
Resources

cover.jpeg
Gulp

Succinctly®

by Kris van der Mast

Bisunctusion | Techn

images/00011.jpeg
ese 15 chapter 2 — bash — 80x15

tomaco2: chapter 2 krisvandernasts gulp

122:33:42] Using gulpfile ~/gulptests/chapter 2/gulofite.)s

122:33:42) Starting *taski’..

Task 1 is executing.

122:33:42) Finished *taski’ after 67 s
142] Starting ‘1askat...

15 dotng 1ts thing.

2] Finished *tacii’ after 37 us

421 Starting *builo!

2] Finished *ouiic after 14 s

:47] Starting ‘default's.

1t task.

133:42] Finished ‘default® after 33 ys

tomacoz:chapter 2 krisvandernasts |

images/00010.jpeg
i chapter 2 — bash — 80x15
tonacez:chapter 2 krisvandernasts gulp
351 Using quipfite -/auipiests/chapter 2/gulpfite. 15
291 Starting +trons oraLessANGHNLYCSS!

images/00013.jpeg

images/00012.jpeg

images/00015.jpeg
_ chapter 3 — node — 80x15 |
hapter 3 krisvandernasts gulp

47] Starting ‘detault...
71 Finished *oerouic after 3,93 us

images/00014.jpeg
one 15 chapter 2 — bash — 80x18

tomacoz: chapter 2 krisvandernasts gulp

[17:54:25] Using gulpfile ~/gulptests/chapter 2/qulafile.js

[17:54:20) Starting *clean'...

Cleaning vp....

21 Finished *clean’ after 57 4o

201 Starting *tackit..

is executing

:29] Finished '{asii’ after 16 us

129] Starting *tasizt...

is doing its thing..!

2] Finished *tacti’ after 13 us

20 Starting *ouilo!

4:20) Finished *buila: after 3.29 us
“defaultte.s

sdetaultt after 14 4s
tonaces:chapter 2 krisvandernasts §

images/00002.gif

images/00001.jpeg

images/00004.jpeg

images/00003.jpeg

images/00006.jpeg
ose isvandermast —-bash — 8014,
~ krisvandernasts node ~v g

-~ krisvandermasts npn v

tomacain krisvandermasts qulp v
[2113:45] CLT version 3.9.0
tomaco2i~ krisvandernasts |

images/00005.jpeg

images/00008.jpeg
ese i chapter 2 — bash — 80x15
tomaco2: chapter 2 krisvandernasts gulp

12] Using qulpfile ~/gulptests/chapter 2/gulpfite.)s
12] Tosk ‘defoult’ 15 not in your guipfite

[21:19:17] Please check the docusentation for proper gulpfile formatting
tomacoz:chapter 2 krisvandernasts |

images/00007.jpeg
XX} 1 chapter 2
<hapter 2 krisvandersasts gulp
51 Uing auiptite ~/goiptests/choster 2/gulafile. 15
51 Starting “getoulttss.
51 Finisned “cc ol stter 5,12 ns

images/00009.jpeg

images/00031.jpeg
file:///Users/krisvandermast/gulptests/chapter%204/SourceMa

Thisi This i "

Q [0 Elements Network | Sources | Timeline Profiles Resources ~Audits

Sources Content scripts Snippets | [{] Styles.css Styles.scss x

v O file:// 1 p.CoolLink {
v users krisvandermast/guiptes| 3 £opert bues
v(ess 4 " text-decoration: underline;
= styles.css Z z:vlslted {
< index.html 7 color: green;
v (3 source g R
= Styles.scss

{} Line 1, Column 1

images/00030.jpeg
text-decoration: underline;

)
Savisited €
color: green;

images/00033.jpeg
ese 14 logger — -bash — 80x14.

tomace2: logger krisvandersasts gulp

[17:52:57] Using gulpfile ~/gulpteats/chapter 4/Logger/quipfile. s

Starting *csssass

Finished *coc:sost after 8.28 ms

Starting ‘acfault

Finished *actoulc after 14 us
acess Sass files,

<. Assets/Sass/c.5css ...done.

Processing... Assets/Sass/secondstyle.scss -

Processing... Assets/Sass/styles.scss ...00ne

Sass files were processed.

tomaco2: logger krisvandermasts |

images/00032.jpeg
L XX) 1 gutil — -bash — 80x14

[tomace2:gut il keisvandernasts gulp p
120:39:04] Using gulpfile ~/gulptests/chapter 4/qutil/gulpfite. js
4] Starting “log"...
04 Sosething vent terribly wrong.
1 B Everything went saooth.

4] Finished 'Log® after 1.46 ns

1 Starting *oefault’
04) Finished "defoult"
‘tonace2:gutil krisvandernasts

images/00035.jpeg
v clean
> node_modules.
v wwwroot

0 configjson
s gulpflejs

0 package.json

images/00034.jpeg
¥ clean
> node_modules
¥ wwwroot
v s
styles.css
A
s allminjs
0 config.json
s gulpfile.js
0 package.json

images/00037.jpeg

images/00036.jpeg

images/00028.jpeg

images/00027.jpeg
ene 1 CoffeeScript — bash — BOx15.

toseco2: Coffeescript krisvandernasts qulp

1197595221 Using sulpfile ~/outptests/chapter 4/Coffeescript/gulpfile. s
(13:55:22) Starting coriect e

(193351221 Finished *cotfect after .75 s

1193551221 Starting taeauis,

[09:59:22] Finianed *cetuli aiter 4.02 us
Tlsers/krisvanderasst/qulptests/chapter 4/Coffeescript/Assets/Coffeef tbonace.c
offee:1:2: error: reqular expressions camot begin with

74" Sone. comment +/

There's sonething wrong with the Coffeescript file(s)
tomaco2:Cotfeescript krisvandernasts |

images/00029.jpeg
¥ SourceMaps
¥ Assets
v sass
Styles.scss
» node_modules
¥ wwwroot
v css
Styles.css
v maps
Styles.css.map.
© indexhtm!
1 guipfile s
0 packagejson

images/00020.jpeg
FOLDERS
¥ UveReload
v Asses
 hde
indexade
" tess
= syles.ess
> node modules
= gulfiess

0 package son

images/00022.jpeg
oo

| LiveReload — node — 80x16.

tomaco2:LiveReload krisvandernasts gulp

122
[22:23:16] Starting *
[22:23:16] Finished
[22:23:16] starting
161 Finished

+16] starting
Finished
starting
Finished
Starting
Finished
Server s

161 Using quipfite -/euipiests/hapter 3/LiveRcland/aulstite. s

et siter s v

“connect "after 13 a5
saefaultsee

sgefault after 3.74 us
rted hitp://locathost 8080

LiveReload started on port 35729

images/00021.gif

images/00024.jpeg
FOLDERS.
¥ LiveReload
v Assets
¥ jade
© indexjade
¥ Less
s colors.less
e styles fess
v s
colors.css
styles.css
» node_modules
1 guipfile s
& indexchtmi
0 package json

images/00023.jpeg
gulp s great

images/00026.jpeg
s i e
Gocmentiuritel <script sroer o (locationsprotocol |1 *httgi®) + 11" + (location.ostrase || *locatbost’) +
TR eretod fanpiers? GoecHentscrit o seiot> |
it
SSETia8 Sresht o lecatbost 35129/ verelond. sTsnipversi typestextJavsscripta</scripts
—

images/00025.jpeg

images/00017.jpeg
. chapter 3 — node — 80x15
ter 3 krisvandernasts gulp

Using gulpfile ~/qulptests/chapter 3/gulofite.)s
Starting twatchlesstiles®

Finished *uatcniessfiles® after 3.98 s
Starting ‘Gefault...

Finished *ocrouic

Starting *lessTocss!
Finished *lcciTocss after 6.6 55
Starting *lcssToCs:

Finished *lesTocss after 1,98 ns
Starting *lessToCss "

Finished *lesrocss
Starting *lessTocss "
Finished *lessTocss* after 1,76 ns

ter 3.87 s

ter 1.2 v

images/00016.jpeg
LXK} . chapter 3 — node — 80x15
tosacoz:chapter 3 krisvandernasts gulp

1 Using qulpfile ~/gstpsectschopter 3/gutpfite.js
051 Starting uatchiessrics:
99 Finished “uotcnieasriics: after 3,67 s
05) Starting ‘default...
$21:0] Finished *octouli after 3.73 s
Motching ile /Users/krisvandernast/quiptests/chapter 3/Assets/styles. less being
i byt

images/00019.jpeg
ese . chapter 3 — node — 80x15
tonace2: chapter 3 krisvandermosts oulp

561 Using qulpfile ~/guiptests/chapter 3/gulptile. s

Starting watchlessr i iea"

Finished ‘uatchiessfiles after 5.25 ns
Starting ‘default...
Finished *dcioult
Starting *lessTocss
Finished *icostoces after 5.
Starting *lessTocs:
Finished *ecitoces after 2,44 ns

ter 14 4s

images/00018.jpeg
chapter 3 krisvandernasts gulp
7] Using qulpfile ~/gulptests/chapter 3/quipfile.js
7] Starting 'watchessFiles’...

71 Finished 'uotcniessriles after 4.51 6

[16:21:37] Starting *defoult’...

[16:21:37] Finished *defoult" ‘after 3.3 ys

Watching file /Users/krisvandernast/qulptests/chapter 3/Assets/styles. less being
changed by gulp.

[16:21:43] Starting *lessTocss'...

[16:21:43) Finished *lessTocas® after 6.58 ns

Watching file /Users/krisvandernast/quiptests/chapter 3/Assets/styles. less being
changed by gulp.

(16:21:45] Starting *lessTacss'...
[16:21:45] Finished *lessocss! after 2.

1 ms

images/00051.jpeg

images/00050.jpeg
Lig-]

@

- |

Festors Pukages &
WebEsentls

Confpre sl Toos
Ey—

Open n e e
Scopeto s

New SolatonEoe Vi
operes

& Propertes

W Servie Refeences
© wwwroot

B gup 3a.11)
» @ gup-concat 252)
3 gulp-cssmin 0.1.7)
4 qulprinect 400)
& gulp-ugity (120)
B dmeaf 228)
wolers
ations
dels
ARSEnter e modules

b Services

b8 ViewModels

b Views

images/00049.jpeg
1 e
2 “name": "ASP.NET",
3 Fversion
h “devbependancies”: {
s “gulp": *3.8.11",
. “gulp-concat™: "2.5.2",
7 “gulp-cssain® *0.1.7",
s “gulp-uglify": "1.2.07,
s “rimraf™: "2.2.8",
1 “gulp-inject":
n) P
e ltest sable version of the paciage. & NN

@ 400
-400

images/00040.jpeg
551 Solution ‘GulpInVS' (1 project)
4 @l Solution Items
& globaljson
4 @ s
4] GulplnVs
F Properties
b *m References
4 @ wwwroot

b M s
b images
b oM
> Ml lib

LT _referencesjs
B favicon.ico
¥ web.config
4 7 Dependencies
b g Bower
b NPM
1 Controllers
W Migrations
8 Models
M Services.
W Views
T bowerjson

T packagejson

b & projectjson
) Project Readme.htmi
c* Startup.cs

images/00042.jpeg
v

Y OXxDx @

Open
Open With

Searchfor TypeScript Typings..

Tk Runner Eplorer
Configure Eternal Tooks...
Scopeto This

New Salution Explorr View
cu

Copy

Delete

Rename

Properties

== images.
o
reencesis
ebconig
endancies
Somer
wm
olles

X otions

e e

el

Altenter

8 hosting.ni
T packagejion

b T projectjson
D) Project Readme.htmi
o Startupcs.

images/00041.jpeg
ETTER ... GO o NN

=
B p—
TR

_@D

b oot

images/00044.jpeg

images/00043.jpeg
*
 Before Buid (0
© After Buid (0
4 Gean (1)
4§ Gulpfejs
dean

 Project Open (0)

Task Runnes Explorer OutputError List

images/00046.jpeg
T — T
e e
= St

e

et
1 o

e |

Errr—
e

sk RunnerExplorer Output Eror st~ Az App Senvice Actvity

images/00045.jpeg
¢ Gpns - Bindings
45 Guptiess + Before Buid ()
4 Tass © After Buid (0
desn 4 Gean ()
=
i S

mings

sk Runner Bplorer Output v it

images/00048.jpeg

images/00047.jpeg
& GulpinVsWatch ~ 8 Bindings _ watch (running) x
4§ Gulpfilejs v Before Build (0)
 Tasks b After Buiid (0)
cssisass b Clean (0)
watch 4 Project Open (1)
4§ Guipfilejs

watch

images/00039.jpeg
New ASPAET rsect -Gulpints
seectatempiote
ASPNET 46 Tempiates

8§ &8 o @ o

oy Wefoms WG WehN Soerue
o
[R

e 201 Agp e Mabite Acue Mobile
Bresen] | hgp Prosen) Senice

e —.
&g oo
W e

Sptnn

[T ————
WebFoms [IMYC Wb 401

Adduitests

Tetpriectnome GupniSTets

PREVIEW - A prject empaeforcetingan ASPNET S
sppicaton The templte ies ASPNET WVC and con
e used 0 buld Web Apphctions and RESTIlHITP.
Sevices.

Lomnoe

Authentcaton: ndhidust Vs Accouts

py—
@ [Hostinthe coud

Y —

images/00038.jpeg
s

prr—r———
5 oserva
o ——

[y —
i ogcatin st Pt

T —

