

 Copyright © 2016 by Syncfusion Inc.

 2501 Aerial Center Parkway

 Suite 200

 Morrisville, NC 27560

 USA

 All rights reserved.

 Important licensing information. Please read.

 This book is available for free download from www.syncfusion.com on completion of a registration form.

 If you obtained this book from any other source, please register and download a free copy from www.syncfusion.com.

 This book is licensed for reading only if obtained from www.syncfusion.com.

 This book is licensed strictly for personal, educational use.

 Redistribution in any form is prohibited.

 The authors and copyright holders provide absolutely no warranty for any information provided.

 The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising from, out of, or in connection with the information in this book.

 Please do not use this book if the listed terms are unacceptable.

 Use shall constitute acceptance of the terms listed.

 SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the registered trademarks of Syncfusion, Inc.

 Technical Reviewer: James McCaffrey

 Copy Editor: Courtney Wright

 Acquisitions Coordinator: Morgan Weston, social media marketing manager, Syncfusion, Inc.

 Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

 Table of Contents

 The Story behind the Succinctly Series of Books

Introduction

 Chapter 1 SQL Server Management Studio

 Chapter 2 ADO.NET

 Chapter 3 Entity Framework Database First

 Chapter 4 Entity Framework Code First

 Chapter 5 SQL Server Data Tools

 Chapter 6 Troubleshooting

 Chapter 7 Interception, Locking, Dynamic Management Views

 Chapter 8 Continuous Integration

 Detailed Table of Contents

The Story behind the Succinctly Series of Books

 Daniel Jebaraj, Vice President

 Syncfusion, Inc.

 Staying on the cutting edge

 As many of you may know, Syncfusion is a provider of software components for the Microsoft platform. This puts us in the exciting but challenging position of always being on the cutting edge.

 Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other week these days, we have to educate ourselves, quickly.

 Information is plentiful but harder to digest

 In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

 While more information is becoming available on the Internet and more and more books are being published, even on topics that are relatively new, one aspect that continues to inhibit us is the inability to find concise technology overview books.

 We are usually faced with two options: read several 500+ page books or scour the web for relevant blog posts and other articles. Just as everyone else who has a job to do and customers to serve, we find this quite frustrating.

 The Succinctly series

 This frustration translated into a deep desire to produce a series of concise technical books that would be targeted at developers working on the Microsoft platform.

 We firmly believe, given the background knowledge such developers have, that most topics can be translated into books that are between 50 and 100 pages.

 This is exactly what we resolved to accomplish with the Succinctly series. Isn't everything wonderful born out of a deep desire to change things for the better?

 The best authors, the best content

 Each author was carefully chosen from a pool of talented experts who shared our vision. The book you now hold in your hands, and the others available in this series, are a result of the authors' tireless work. You will find original content that is guaranteed to get you up and running in about the time it takes to drink a few cups of coffee.

 Free forever

 Syncfusion will be working to produce books on several topics. The books will always be free. Any updates we publish will also be free.

 Free? What is the catch?

 There is no catch here. Syncfusion has a vested interest in this effort.

 As a component vendor, our unique claim has always been that we offer deeper and broader frameworks than anyone else on the market. Developer education greatly helps us market and sell against competing vendors who promise to “enable AJAX support with one click,” or “turn the moon to cheese!”

 Let us know what you think

 If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at succinctly-series@syncfusion.com.

 We sincerely hope you enjoy reading this book and that it helps you better understand the topic of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the word about the Succinctly series!

 [image: Twitter Icon] [image: Facebook Icon]

About the Author

Sander Rossel is a professional developer with working
experience in .NET (VB and C#, WinForms, MVC, WebAPI, Entity Framework),
JavaScript, Git, Jenkins, Oracle, and SQL Server.

He has an interest in various technologies including, but not
limited to, functional programming, NoSQL, Continuous Integration (and more
generally, Software Quality), and software design.

He’s written another e-book in the Succinctly
series that you can download for free: Object-Oriented Programming in C# Succinctly.

He seeks to educate others on his blog, Sander's bits -
Writing the code you need, on his CodeProject profile, and through his
continuing book-writing.

Introduction

When writing many applications, you will almost certainly
need some kind of database. And when you use a database, you’re going to have
to work with it. Whether you have database administrators (DBAs) or develop
both the database and the application, a little database knowledge always comes
in handy.

This book is for everyone who develops C# applications
with a SQL Server database. In this book, we’re going to connect to a database
using classic ADO.NET, and using the Entity Framework, we’re going to look at
different methods to develop your database. We’ll see common pitfalls, why your
database is running slow, how we can troubleshoot performance issues, and how
we can test and deploy our SQL Server database. The first half of the book has
a focus on C# and development. The second half of the book has a focus on
troubleshooting using the SQL Server tools.

C# and SQL (the query language) knowledge is assumed.

Tools

In this book we’ll make use of Visual Studio 2015 Community
Edition and SQL
Server 2014 Express on a Windows machine (I’m using Windows 8.1 Pro and
Windows 10). You will need a Microsoft account to download these files. When
prompted for a specific SQL Server Express version, pick SQL Server Express
with Tools (or SQL Server Express with Advanced Services, if you want to
play around with Reporting Services and Full Text Search, which aren’t a part
of this book).

The provided links take you to the product website and
will probably let you download the newest version of the respective tool. You
may download the newest version at your own risk (the examples in this book
probably still apply), or you may search for the version I have used throughout
this book. Most of the examples also apply to older versions of the tools, so
if you already have something installed, just continue and see if it works.

Installation is pretty straightforward. When installing Visual
Studio, make sure you select the SQL Server Data Tools check box, and
when installing SQL Server, make sure you select Management Tools - Complete.
When prompted for an instance name in the SQL Server installer, pick any name
you like, or choose Default instance (my instance is called SQLEXPRESS).
Other than that, you can leave on all the defaults, accept the license terms,
and just click Next, Next, Next.

Chapter 1 SQL Server Management Studio

If you followed the steps in the introduction, you now
have a clean installation of both Visual Studio and SQL Server. So let’s open
up SQL Server Management Studio (SSMS for short). Log in to your default
instance, which is localhost\name_of_your_instance (default name is
MSSQLEXPRESS) with Windows Authentication if you followed the defaults. You
should now see the following window:

Figure 1: Microsoft SQL Server Management Studio

I’ve always found SSMS very intuitive to use. To execute
any script, simply click New Query in the toolbar. Make sure you select
the correct database (if applicable) in the upper-left corner (or put USE [database_name] GO in your script). Now let’s
create a database to use in future examples. In the Object Explorer, open up
the Databases node. It’s probably empty, so right-click on the Databases
node and click New database. Pick a name (for this book we’ll use
SuccinctlyExamples), leave all the defaults, and
click OK. Now that you have a database, you can open that node and view
all tables, views, and stored procedures.

So let’s create a table. Right-click the Tables
node and click Table. Now create the table in the following figure. Make
sure to set the Id column as Primary Key and make it auto-increment
(which is what the Identity Specification property does).

Figure 2: Person table

When saving, name the table Person. To see the table in
your Object Explorer, you may have to refresh (right-click the Tables
node and click Refresh). Notice that I’ve picked datatype int for GenderId, which
seems a little odd at first. However, I’d like to create another table that has
all the possible genders and refer to that table here.

 	
 [image:]

 	
 Note:
I’ve called the table Person (singular)
and not Persons or People (plural). The naming of tables can be
rather religious for some. One compelling reason for singular naming is that it
will make your life a lot easier when you’re going to use an Object Relational
Mapper (ORM). For more arguments (for and against), check out this thread on StackOverflow.

 	
 [image:]

 	
 Note:
Related is the naming for GenderId in Person (rather than just Gender). One
reason for this naming is that it really is an ID referring to a gender. And
again, this naming convention will make your life easier when using an ORM.
That said, I’ve seen (and used) just Gender many times as well.

In the same manner as before, create the following table
(no Identity Specification on Id this time):

Figure 3: Gender table

When saving this table, name it Gender.

Now go back to your Person
table. If you’ve closed the tab, you can right-click the table and click Design.
Now right-click anywhere, and then click Relationships. Add a new one,
click Tables and Columns Specification, and make sure it looks as
follows:

Figure 4: A foreign key relationship

SSMS will automatically name your foreign key FK_Person_Gender,
so you can leave all the rest and save. You have now told SQL Server that the GenderId column in the Person
table may only contain values that are also a value in the Id column of the Gender
table.

 	
 [image:]

 	
 Note:
Many people believe that relational databases are called so because it is
possible to define foreign key relationships between tables. That is not true
though. A foreign key is nothing more than a constraint, guaranteeing data
integrity. The actual reason relational databases are called so is because the
mathematical term for a table is a relation. A relation is an unordered set of
values. A set is a collection of unique values. A value in SQL Server is a
tuple, which is a collection of values. Uniqueness of a value is guaranteed by
a primary key. That also means that any table (or view) without a unique
primary key is actually not a relation!

Now, right-click the Gender
table and click Edit Top 200 Rows. It doesn’t really matter what you
insert, but maybe you should follow my example.

Figure 5: Genders

Now we can also insert one or more people in the Person table.

Figure 6: People

So that was easy. We’ve set up two tables, created a
foreign key, and inserted some data. We are missing one thing though… the
scripts! You’re going to need the scripts if you ever want to do these steps on
a different database (or the same database on another environment). Luckily,
SSMS has a few options for generating scripts.

The first method is to right-click an object, select Script
[Object] as >, and make your pick. This only scripts out entire objects,
though. This is probably fine for everything but tables (which can’t be
overwritten without losing data). For example, the Person
table CREATE script is as follows:

Code Listing 1: CREATE TABLE [dbo].[Person]

 CREATE TABLE [dbo].[Person](

 [Id]
 [int] IDENTITY(1,1) NOT NULL,

 [FirstName]
 [varchar](256)
 NOT NULL,

 [LastName]
 [varchar](256)
 NULL,

 [DateOfBirth]
 [smalldatetime] NULL,

 [GenderId]
 [int] NULL,

 CONSTRAINT [PK_Person] PRIMARY
 KEY CLUSTERED

 (

 [Id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE =
 OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

 GO

 SET ANSI_PADDING OFF

 GO

 ALTER TABLE [dbo].[Person] WITH CHECK ADD CONSTRAINT [FK_Person_Gender] FOREIGN KEY([GenderId])

 REFERENCES [dbo].[Gender] ([Id])

 GO

 ALTER TABLE [dbo].[Person] CHECK CONSTRAINT [FK_Person_Gender]

 GO

That’s awesome, but do note that we need the Gender table first, or this script will fail. We added
the foreign key constraint later, but it’s all here in this one script.

For updates to tables, we can go into the Design window,
add a column, change a type, add a constraint, and then right-click, and choose
Generate Change Script. For example, I’ve added a LastLoginTime column, and I’ve changed GenderId to be non-nullable.

Figure 7: Save Change Script

As you can see, SQL Server actually creates a temporary
table, drops the table, and makes the changes. It does more than you’d think! You
can save this script and then execute it on another environment effortlessly
(or even automated). Unfortunately, dropping and recreating a table is pretty slow
and resource-heavy, so you might want to write your own change scripts anyway.

You can open a new query window using the New Query
button in the menu near the upper-left side of the screen, or by using Ctrl
+ N. Be mindful to make sure you execute scripts (using the Execute
button or F5) on the correct database—a common mistake is executing
scripts on the master database, which is selected as default.

The following simple script will also add the LastLoginTime column and make GenderId
non-nullable.

Code Listing 2: ALTER TABLE

 ALTER TABLE dbo.Person

 ADD LastLoginTime DATETIME

 ALTER TABLE dbo.Person

 ALTER COLUMN GenderId
 INT NOT NULL

 	
 [image:]

 	
 Tip: It
is possible to execute only certain parts of scripts in a single query window.
Simply select the part of the query that you want to execute and hit F5. This
is especially handy when you’re testing some software and you’d like to inspect
the data, reset the data, run your code again, and repeat. Write a SELECT statement and an UPDATE/INSERT/DELETE statement in a single
window, and you can execute the two (or more) statements independently, without
having to switch windows all the time.

Last, but not least, you can script a database with all or
some selected objects, and with or without data. Right-click your database, go
to Tasks >, and then choose Generate Scripts. Go through the
wizard and experiment with it (it’s not very complicated, but it has a lot of
options). Here is the generated script for the Gender
table, including data.

Code Listing 3: CREATE TABLE [dbo].[Gender] including data

 CREATE TABLE [dbo].[Gender](

 [Id]
 [int] NOT NULL,

 [Code]
 [varchar](16)
 NOT NULL,

 [Description]
 [varchar](64)
 NOT NULL,

 CONSTRAINT [PK_Gender] PRIMARY
 KEY CLUSTERED

 (

 [Id] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE =
 OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

 GO

 SET ANSI_PADDING OFF

 GO

 INSERT [dbo].[Gender] ([Id], [Code],
 [Description]) VALUES
 (0, N'UNKNOWN', N'Not saying')

 GO

 INSERT [dbo].[Gender] ([Id], [Code],
 [Description]) VALUES
 (1, N'MALE', N'Male')

 GO

 INSERT [dbo].[Gender] ([Id], [Code],
 [Description]) VALUES
 (2, N'FEMALE', N'Female')

 GO

That was a brief introduction to SQL Server Management
Studio. The tree view combined with right-click context menus work very well.
Of course, you can use all kinds of shortcut keys if you want; just look them
up in the menus. We’re going to use SSMS more often throughout this book.

 	
 [image:]

 	
 Tip:
When creating new objects in your database, you will not get full design time
support when writing queries against these newly created objects. They won’t
show up in autocomplete, and SSMS will tell you these objects don’t exist if
you manually type them in your query. Your queries will run successfully,
though. Even a database refresh will not help you here. For a long time, I
thought restarting SSMS was the only way to load new objects into the SSMS
object cache. It turned out Ctrl + Shift + R also does the trick—no more red
squiggly lines under objects you’ve just created!

Chapter 2 ADO.NET

Now that we have a database, let’s see how we can get data
from that database into our application, or from our application into our
database. An obvious choice nowadays would be an Object Relational Mapper (ORM)
that automatically creates classes from our tables and knows how to read and
store data with a simple, single command. It can be that easy. However, a lot
is still happening that you do not know about. It is my belief that you can’t
truly understand an ORM if you haven’t done the same thing without an ORM. In
fact, I’ve met developers who have never used anything other than an ORM, and
were absolutely clueless when it didn’t support some feature they needed. Or
who were amazed when their ORM spewed out huge queries at 100 times a second!
If you don’t really understand your ORM, you’re going to have a hard time (and
a slow application). So let’s work without an ORM first, and see what happens
at a (somewhat) lower level.

Open up Visual Studio and create a new Console Application
in C# (or Visual Basic if you like, but my examples will be in C#). The .NET
Framework has a set of components for working with data sources (such as
databases or spreadsheets), collectively called ADO.NET. Microsoft first
introduced ADO, which is short for ActiveX Data Objects, long before the .NET
Framework. Most of ADO.NET is in the System.Data
namespace, which is automatically available when you create a new project.

Let’s say we want to retrieve a person from the database
and use it in our software. The first thing we’d need is a connection to the
database. For now, we’re assuming we’ll always use a SQL Server database. In
this case, we’re going to make extensive use of the System.Data.SqlClient
namespace.

Establishing a connection

The first thing we’ll need is an actual connection.
Without a connection, we’ll never be able to do anything with our database.

The connection string

In order to set up a connection, we’ll need a connection
string: a text value specifying various options necessary to set up a
connection, such as the server on which our instance is running, the database
to connect to, login credentials, a name for the connection, timeout, language,
and more.

You can connect to any type of database using a connection
string, and every database vendor has their own format. Luckily, we have
websites such as connectionstrings.com
to help us out. The typical connection string looks as follows:

Server=server\instance;
Database=database; User Id=username; Password=password.

Or, in case you choose integrated security, instead of
User Id and Password you can put in Trusted_Connection=True;
or Integrated Security=True; or even Integrated Security=SSPI (they’re all the same).

Likewise, Data
Source=server\instance is a much-used alternative to Server=server\instance, and Integrated
Security=database is a much-used alternative to Database=database.

So let’s fill in the blanks and create a connection. My
connection string looks as follows: Server=Laptop23\SQLEXPRESS;
Database=SuccinctlyExamples; Integrated Security=SSPI.

Creating a connection

Now let’s create a connection in code and open it. A short
note on the code: I’m using $”…” syntax for
strings, which is a new feature in C# 6.0. It’s basically a shorthand for string.Format.

Code Listing 4: Creating a SqlConnection

 try

 {

 using (SqlConnection connection = new SqlConnection(

 @"Server=LAPTOP23\SQLEXPRESS;
 Database=SuccinctlyExamples; Integrated Security=SSPI"))

 {

 connection.Open();

 // The database is
 closed upon Dispose() (or Close()).

 }

 Console.WriteLine("Successfully opened and
 closed the database.");

 }

 catch (Exception ex)

 {

 Console.WriteLine($"Something went wrong while
 opening a connection to the database: { ex.Message }");

 }

 Console.WriteLine("Press any key to
 close.");

 Console.ReadKey();

The first line of code creates a new SqlConnection instance (found in System.Data.SqlClient) and passes in the connection
string. A lot of objects we will use need to be properly disposed to release
resources (in this case the database connection), so we will properly wrap the SqlConnection in a using block. The connection is
automatically closed when the Close() or Dispose() method is called (by the using block). The connection.Open() opens the connection.

A lot can go wrong in these few lines of code, hence the try-catch block. Try
making a typo in the connection string (for example, SServer),
use a non-existing database (any random value), supply invalid credentials, or
try to open the connection twice (without closing in between). All of those will
result in an Exception being thrown.

Configuring your connection string

Having the connection string hard-coded in C# may be
convenient during development, but is not very practical (or secure) in a
production environment. You will need to change it, rebuild, and redeploy every
time your database or environment (development, test, production) changes.

Connection strings are often stored in config files. The
configuration file for your application is usually different for each
environment. The big advantage to storing various settings in a configuration
file is that you can change the behavior of your application without actually
changing and redeploying your application, allowing different settings in
multiple environments. Storing configuration strings in configuration files is
so common that the .NET config file actually has a connectionStrings
section. I’ve added the SuccinctlyDB connection
string to the app.config file.

Code Listing 5: connectionStrings section in config file

 <?xml version="1.0" encoding="utf-8" ?>

 <configuration>

 <connectionStrings>

 <add name="SuccinctlyDB" connectionString="Server=LAPTOP23\SQLEXPRESS; Database=SuccinctlyExamples;
 Integrated Security=SSPI"/>

 </connectionStrings>

 <startup>

 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6"
 />

 </startup>

 </configuration>

We can now easily retrieve the connection string from the
config file. First we will need to add a project reference to System.Configuration. Now we can easily replace the
first line of code to use the value from the config file.

Code Listing 6: Use connection string from the config file

 string connectionString = ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

Notice that when the connection string is not present in
the config file, connectionString will be empty
and an Exception will be raised when trying to
open the connection (“The ConnectionString property was not initialized”). Without
the ?. null-conditional operator, we would get a
NullReferenceException when trying to get the ConnectionString property instead.

Building a connection string

In some use cases, you might want to edit the connection
string or create it from scratch (for example, when writing the SSMS login
form). For this use case, we can use a SqlConnectionStringBuilder.
The SqlConnectionStringBuilder does pretty much
what its name implies; it creates connection strings using various input
parameters. Let’s look at a simple example.

Code Listing 7: The SqlConnectionStringBuilder

 SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder();

 builder.DataSource
 = @"LAPTOP23\SQLEXPRESS";

 builder.InitialCatalog
 = "SuccinctlyExamples";

 builder.IntegratedSecurity
 = true;

 using (SqlConnection connection = new SqlConnection(builder.ConnectionString))

Notice that the SqlConnectionStringBuilder
actually uses the terms DataSource and InitialCatalog instead of Server
and Database. Also, IntegratedSecurity
is set to true instead of SSPI (or Trusted_Connection).

We can also use the SqlConnectionStringBuilder
to edit connection strings. The constructor is overloaded, so you can insert a
connection string to be used as a base.

Code Listing 8: Editing a connection string

 string baseConnectionString = ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder(baseConnectionString);

 builder.IntegratedSecurity
 = false;

 builder.UserID
 = "sander";

 builder.Password
 = "password";

 using (SqlConnection connection = new SqlConnection(builder.ConnectionString))

In this example we’re setting UserID
and Password in favor of Integrated Security. Of course, trying to open the
connection will now fail, as these credentials are clearly invalid.

Querying your database

The next step is using our connection to retrieve some
data. This requires a SqlCommand to hold and
execute our queries. Let’s select our Person
table using the query SELECT Id, FirstName, LastName,
DateOfBirth, GenderId FROM Person. To do this, we’ll need to create the SqlCommand, pass it our query and a SqlConnection, and have it execute the query.

 	
 [image:]

 	
 Tip:
Never use SELECT *
in your production code or SQL queries. SELECT * retrieves all columns in a
table, which is not always what you want. By using SELECT * you’re losing control over
your code and what it retrieves. SELECT * may yield unintended results.
For example, when used in a view, SELECT * will select all fields that
were present at the time the view was created, not all fields that are present
when the view is queried (so removing a column will still break your view).
Overall, it’s best to avoid SELECT * except for some simple, ad-hoc queries.

Reading data

When using the ExecuteReader
function on a SqlCommand instance, its select
query is executed and we get a SqlDataReader
that holds the retrieved data. A SqlDataReader,
unfortunately, is not very easy to work with. I don’t know why, but it requires
quite a bit of typing. The SqlDataReader reads
the result set row by row (forward only), and you can access columns by index
or name. Obviously, selecting by index is not very readable, especially in big
queries (who knows what column index 43 is?), but getting the index by name returns
the value as object and requires the programmer to make the proper conversions.
You can get the index of a column by name as well, and then use the SqlDataReader methods to get the correct values. Then,
if no value is present (some say the value is NULL),
you will have to make a conversion to a default value or null yourself. Fun fact: NULL
from your database is a whole different something than null
in C#. A database NULL is represented in C# by
the static DBNull.Value. Tedious, to say the
least. We’ll probably want to store the results in some custom objects too, so
we’ll need to create a Person class. Let’s see
what this looks like.

First, let’s create a simple Person
class.

Code Listing 9:
A Person class

 public class Person

 {

 public int
 Id { get; set;
 }

 public string FirstName { get; set; }

 public string LastName { get; set;
 }

 public DateTime? DateOfBirth { get; set; }

 public int?
 GenderId { get; set;
 }

 }

And now for the code to get all people from the database:

Code Listing 10: Usage of the SqlDataReader

 try

 {

 List<Person> people = new List<Person>();

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "SELECT Id,
 FirstName, LastName, DateOfBirth, GenderId FROM dbo.Person",

 connection))

 {

 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())

 {

 while (reader.Read())

 {

 var p = new
 Person();

 // Get Id by index...

 object idByIndex = reader[0];

 // ...And make the
 correct conversion.

 int idByIndexCast = Convert.ToInt32(idByIndex);

 // Get Id by name...

 object idByName = reader[nameof(Person.Id)];

 // ...And make the
 correct conversion.

 int idByNameCast = Convert.ToInt32(idByName);

 // Or get the Id index
 by name...

 int idIndex = reader.GetOrdinal(nameof(Person.Id));

 // ...And use the
 SqlDataReader methods.

 p.Id = reader.GetInt32(idIndex);

 int firstNameIndex = reader.GetOrdinal(nameof(Person.FirstName));

 p.FirstName = reader.GetString(firstNameIndex);

 int lastNameIndex = reader.GetOrdinal(nameof(Person.LastName));

 if (!reader.IsDBNull(lastNameIndex))

 {

 p.LastName = reader.GetString(lastNameIndex);

 }

 int dateOfBirthIndex =
 reader.GetOrdinal(nameof(Person.DateOfBirth));

 if (!reader.IsDBNull(dateOfBirthIndex))

 {

 p.DateOfBirth = reader.GetDateTime(dateOfBirthIndex);

 }

 int genderIdIndex = reader.GetOrdinal(nameof(Person.GenderId));

 if (!reader.IsDBNull(genderIdIndex))

 {

 p.GenderId = reader.GetInt32(genderIdIndex);

 }

 people.Add(p);

 }

 }

 // The database is
 closed upon Dispose() (or Close()).

 }

 Console.WriteLine("Successfully opened and
 closed the database.");

 foreach (Person p in people)

 {

 Console.WriteLine($"{p.FirstName} {p.LastName} was born on {p.DateOfBirth}");

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine($"Something went wrong while
 opening a connection to the database: { ex.Message }");

 }

 Console.WriteLine("Press any key to
 close.");

 Console.ReadKey();

First of all, notice that I’m declaring my List<Person> at the top so I can use it outside
of the using blocks. It’s generally best
practice to open a connection, get your data right away, and immediately close
your connection. Your database connection remains open until it is explicitly
closed, and when using a SqlDataReader, you
can’t close it until everything is read. So just read, close, and use your data
later!

Creating the SqlCommand is
pretty straightforward. And as promised, the SqlDataReader
is a little less straightforward. The SqlDataReader
works with a table, of which a single row is accessible at a time. The first
row (if any) will become accessible when SqlDataReader.Read
is called. Any subsequent call on Read will move
to the next row, if any. If no (next) row is available, Read will return false.
To check if any rows are available, you can use the SqlDataReader.HasRows
property. The GetOrdinal function returns the
index of the column name (nameof only works here
because I’ve named my properties the same as my database columns; if one of
them changes, this code will break, but if both change, all your code will keep
working).

In this example we see GetInt32,
GetString, and GetDateTime.
There are more Get[Type] methods, like GetInt16, GetInt64, GetBoolean, GetChar,
and more. They convert the SQL type to the appropriate CLR type. If a value is
missing, the Get[Type] methods will throw an Exception. So for nullable fields, we’ll need to check
for NULL using IsDBNull.
Alternatively, there’s a GetValue function that
will just return an object. You can use it if you don’t need the type of a
value. To check for NULL, use DBNULL.Value.

Code Listing 11: SqlDataReader.GetValue(string)

 object value = reader.GetValue("SomeColumn");

 bool isDbNull = value == DBNull.Value;

Now here’s another interesting one. What if we wanted to
return multiple result sets? Say we change the select query and retrieve all
genders. The SqlDataReader can retrieve multiple
result sets and access them in the same manner it can access rows. The reader
is on the first result set by default, but if you have any subsequent result
sets, you can call NextResult and the reader
will move to the next result set. You can call Read
again to move to the first row (if any).

Code Listing 12: SqlDataReader with multiple result sets

 List<Person> people = new List<Person>();

 List<Gender> genders = new List<Gender>();

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "SELECT Id,
 FirstName, LastName, DateOfBirth, GenderId FROM dbo.Person;"

 + "SELECT Id,
 Code, Description FROM Gender;",

 connection))

 {

 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())

 {

 while (reader.Read())

 {

 // Process people...

 }

 reader.NextResult();

 while (reader.Read())

 {

 Gender g = new
 Gender();

 g.Id = reader.GetInt32(0);

 g.Code = reader.GetString(1);

 g.Description = reader.GetString(2);

 genders.Add(g);

 }

 }

 }

So does it have to be this difficult to read data from a database?
There are some alternatives, which we’ll look at later in this book. Using a SqlDataReader is, however, the best-performing way
(when done correctly) to read data from a database.

By the way, if your query returns a single value (a table
of one row and one column), you can use ExecuteScalar
instead. This will return an object that can be cast to the correct type.

Code Listing 13: Usage of ExecuteScalar

 public string GetPersonName(int id)

 {

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "SELECT
 FirstName FROM dbo.Person WHERE Id = @Id", connection))

 {

 command.Parameters.Add("Id", SqlDbType.Int).Value = id;

 connection.Open();

 object result = command.ExecuteScalar();

 string firstName = null;

 if (result != DBNull.Value)

 {

 firstName = (string)result;

 }

 return firstName;

 }

 }

Parameterization

Before we continue, I’d like to address a very, VERY
important topic: parameterization. I can’t tell you enough how important it is
to use parameters. This is the “practice safe sex” of programming.
Unfortunately, just as people have unsafe sex, programmers still don’t always
use parameters. The result is slow queries, and even more important, security
breaches and leaked data. The worst part is that it happens to really big IT
companies like Sony, Symantec, and SAP. There is this fun SQL Injection Hall
of Shame that you really don’t want to be in. Really—use parameters.

Now that you know parameterization is really important,
let’s look at what it is exactly, and how to implement it. Usually, when
working with a database, you’re not selecting entire tables. Most of the time
you’re going to use some filter, like WHERE Id = x,
where x is a variable. With the knowledge I’ve
shared so far, you might be tempted to implement a GetPeopleByName
function as follows.

Code Listing 14: Non-parameterized query

 public List<Person> GetPeopleByName(string firstName)

 {

 List<Person> people = new List<Person>();

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "SELECT Id,
 FirstName, LastName, DateOfBirth, GenderId FROM dbo.Person "

 + $"WHERE
 FirstName = '{
 firstName }'",

 connection))

 {

 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())

 {

 while (reader.Read())

 {

 Person p = new
 Person();

 // Read the data...

 people.Add(p);

 }

 }

 }

 return people;

 }

Sure, it gets you a list of people with the given first
name. It also generates the exact SQL statement that you would use in SSMS to
get people with the given first name. So what’s the problem? The firstName variable is probably a value the user
entered in some text field, either on the web or in a desktop application. If
the user enters a name like “D’artagnan,” this will break your code because the
apostrophe ends the string in SQL Server (pretty annoying). Don’t go around and
escape names yourself (replace ‘ with ‘’ or some such); that’s just a lot of
hassle.

Far more dangerous is if a user (or more likely, a
malicious hacker) enters the first name “John’; USE
master; DROP DATABASE SuccinctlyExamples; GO --”? Try it out and bam!
There goes your database (yes, it’s really gone). This is called SQL Injection.
A user is now able to alter SQL statements directly, and by doing this, can get
access to sensitive data and destroy that data. There is actually a legendary xkcd comic about SQL Injection that I think
every developer should have hanging in the office.

This is really just database basics, yet many people get it
wrong—and not just beginners. SAP, Yahoo, LinkedIn, and even the FBI and NASA
have fallen
victim to this simple yet so dangerous exploit. All in all, tens of
thousands of applications (and programmers) have been left unsecure because
people don’t parameterize their queries. Unbelievable, right?

Let’s see how we can parameterize in .NET. Luckily, this
is very easy (making it even more amazing that so many people don’t do it). We
can simply place a parameter in the SQL query and add its value using the SqlCommands (Sql)Parameters collection.

Code Listing 15: Parameterized query

 public List<Person> GetPeopleByName(string firstName)

 {

 List<Person> people = new List<Person>();

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "SELECT Id,
 FirstName, LastName, DateOfBirth, GenderId FROM dbo.Person "

 + "WHERE
 FirstName = @FirstName",

 connection))

 {

 command.Parameters.AddWithValue("FirstName", firstName);

 connection.Open();

 using (SqlDataReader reader = command.ExecuteReader())

 {

 while (reader.Read())

 {

 Person p = new
 Person();

 // Read the data...

 people.Add(p);

 }

 }

 }

 return people;

 }

Notice that the query now has a placeholder, @FirstName (parameters in SQL Server start with @),
where the name is supposed to be. As an added bonus, we don’t have to remember
to put quotes around it (since it’s a string) because SQL Server will do that
for us. The actual value for @FirstName is
pushed to the SqlCommand using command.Parameters.AddWithValue(“FirstName”, firstName);
(the @ in the parameter name is optional in this context). Not often do I see a
more self-explanatory piece of code. If you push in a value like D’artagnan now, everything will be fine because SQL
Server knows this is a single value, and will escape it for you. The same goes
for “John’; USE master; DROP DATABASE
SuccinctlyExamples; GO --”.

Yet this is still not completely right. It’s safe, but not
optimal. The thing is, and I’ll get back to it, SQL Server creates an execution
plan for each query. This plan basically contains instructions for the SQL
engine to get the queried data in a manner that’s probably pretty fast. The
creation of an execution plan takes some time, but luckily SQL Server caches
the plan and will reuse it in the future if the same query comes along. This is
a double-edged sword, but I’ll get back to that. For now, we want to reuse
query plans as much as possible.

So for a query “SELECT FirstName,
LastName FROM dbo.Person” this is straightforward. If the same query
comes along, the cached plan will be used. But what if the plan contains
parameters such as “SELECT FirstName, LastName FROM
dbo.Person WHERE Id = @Id”? The value for @Id
will probably be different the next time we call this query. Still, as long as @Id has the same type, but not necessarily the
same value, the query plan will be reused. And there’s the crux: we
never specified a type for our parameter. The AddWithValue
method infers the type, but does so from the data passed in to it—not the type
of column in the database. The problem here is that the value “Sander” gets inferred to an nvarchar(6)
while the value “Bill” becomes an nvarchar(4).

Another problem, and one possibly more devastating to
performance, is if a type gets inferred incorrectly. For example, the FirstName database field is a varchar(256),
but your parameter has the value “Sander”. This
will be converted to nvarchar(6) by .NET. Those
are different types, and in order to compare values of these types, SQL Server
will have to implicitly cast every value in the FirstName
column to nvarchar(6) before comparing. Although
SQL Server can optimize some of these differences, there comes a time when this
is going to bite you in the backside.

So in order to fix this issue, we should call Parameters.Add instead. Unfortunately, Microsoft
didn’t leave us with an easy overload where we can specify type, size, precision,
and scale along with the value. In varchar(5), varchar
is the type and 5 the size. In decimal(10, 5),
decimal is the type, 10 the precision, and 5 the scale. Parameters.Add has a few overloads; most will create
the SqlParameter for you, and one simply takes a
SqlParameter as input. All of them return the
added SqlParameter.

Code Listing 16:
A SqlParameter with the correct type and size

 command.Parameters.Add("FirstName", SqlDbType.VarChar, 256).Value = "Sander";

So you see, parameterizing your queries is not only
secure, robust, and performing, but also not very hard.

Create, update, delete

Inserting, updating, and deleting data goes pretty much
the same way. Instead of ExecuteReader, we use ExecuteNonQuery, which only returns the number of rows
affected.

Code Listing 17: Insert statement

 public int
 InsertPerson(Person person)

 {

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "INSERT INTO
 dbo.Person (FirstName, LastName, DateOfBirth, GenderId) "

 + "VALUES
 (@FirstName, @LastName, @DateOfBirth, @GenderId)",

 connection))

 {

 command.Parameters.Add("FirstName", SqlDbType.VarChar, 256).Value = person.FirstName;

 object dbLastName = person.LastName;

 if (dbLastName == null)

 {

 dbLastName = DBNull.Value;

 }

 command.Parameters.Add("LastName", SqlDbType.VarChar, 256).Value = dbLastName;

 object dbDateOfBirth = person.DateOfBirth;

 if (dbDateOfBirth == null)

 {

 dbDateOfBirth = DBNull.Value;

 }

 command.Parameters.Add("DateOfBirth", SqlDbType.SmallDateTime).Value = dbDateOfBirth;

 object dbGenderId = person.GenderId;

 if (dbGenderId == null)

 {

 dbGenderId = DBNull.Value;

 }

 command.Parameters.Add("GenderId", SqlDbType.Int).Value = dbGenderId;

 connection.Open();

 return command.ExecuteNonQuery();

 }

 }

Again, the whole null to DBNull.Value
conversion is pretty annoying. Here are two nifty (extension) methods that can
make this kind of code a lot shorter. Unfortunately, they work on ALL types,
whether they’re database-compatible or not, so wrong usage will result in an Exception.

Code Listing 18: Some parameter utils

 public static class DbUtils

 {

 public static object ToDbParameter<T>(this T? value)

 where T
 : struct

 {

 object dbValue = value;

 if (dbValue == null)

 {

 dbValue = DBNull.Value;

 }

 return dbValue;

 }

 public static object ToDbParameter(this object value)

 {

 object dbValue = value;

 if (dbValue == null)

 {

 dbValue = DBNull.Value;

 }

 return dbValue;

 }

 }

The usage now looks as follows.

Code Listing 19: Usage of the utils

 command.Parameters.Add("FirstName", SqlDbType.VarChar, 256).Value = person.FirstName;

 command.Parameters.Add("LastName", SqlDbType.VarChar, 256).Value = person.LastName.ToDbParameter();

 command.Parameters.Add("DateOfBirth", SqlDbType.SmallDateTime).Value = person.DateOfBirth.ToDbParameter();

 command.Parameters.Add("GenderId", SqlDbType.Int).Value = person.GenderId.ToDbParameter();

This looks a lot nicer.

The UPDATE method looks
pretty much the same; the biggest difference is that we now also need an Id parameter for the WHERE
clause.

Code Listing 20: Update statement

 public int
 UpdatePerson(Person person)

 {

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "UPDATE
 dbo.Person "

 + "SET FirstName
 = @FirstName,"

 + " LastName =
 @LastName,"

 + " DateOfBirth
 = @DateOfBirth,"

 + " GenderId =
 @GenderId "

 + "WHERE Id =
 @Id",

 connection))

 {

 command.Parameters.Add("Id", SqlDbType.Int).Value = person.Id;

 command.Parameters.Add("FirstName", SqlDbType.VarChar, 256).Value = person.FirstName;

 command.Parameters.Add("LastName", SqlDbType.VarChar, 256).Value = person.LastName.ToDbParameter();

 command.Parameters.Add("DateOfBirth", SqlDbType.SmallDateTime).Value = person.DateOfBirth.ToDbParameter();

 command.Parameters.Add("GenderId", SqlDbType.Int).Value = person.GenderId.ToDbParameter();

 connection.Open();

 return command.ExecuteNonQuery();

 }

 }

And finally, the DELETE method.

Code Listing 21: Delete statement

 public int
 DeletePerson(Person person)

 {

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "DELETE FROM
 dbo.Person "

 + "WHERE Id =
 @Id",

 connection))

 {

 command.Parameters.Add("Id", SqlDbType.Int).Value = person.Id;

 connection.Open();

 return command.ExecuteNonQuery();

 }

 }

Stored procedures

Executing stored procedures is really not that different
from all the previous examples. Whether you need to call ExecuteReader, ExecuteScalar,
or ExecuteNonQuery depends on the nature of the
procedure. You can pass in the name of the procedure to the command and change
the CommandType to StoredProcedure.
Suppose we created a stored procedure, GetFirstName,
that returns the first name of a person based on ID. The call would look as
follows.

Code Listing 22: Calling a Stored Procedure

 public string GetPersonName(int id)

 {

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand("GetFirstName", connection))

 {

 command.CommandType = CommandType.StoredProcedure;

 command.Parameters.Add("Id", SqlDbType.Int).Value = id;

 connection.Open();

 object result = command.ExecuteScalar();

 string firstName = null;

 if (result != DBNull.Value)

 {

 firstName = (string)result;

 }

 return firstName;

 }

 }

Stored procedures can make use of output parameters, which
are also easy to implement. Suppose we used an output parameter for the first
name. Simply create a parameter, set its Direction
to Output, and read the value after execution.

Code Listing 23: An output parameter

 public string GetPersonName(int id)

 {

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand("GetFirstName", connection))

 {

 command.CommandType = CommandType.StoredProcedure;

 command.Parameters.Add("Id", SqlDbType.Int).Value = id;

 SqlParameter param = command.Parameters.Add("FirstName", SqlDbType.VarChar, 256);

 param.Direction = ParameterDirection.Output;

 connection.Open();

 command.ExecuteNonQuery();

 string firstName = null;

 if (param.Value != DBNull.Value)

 {

 firstName = (string)param.Value;

 }

 return firstName;

 }

 }

Data sets

Retrieving data and manually mapping to your own C#
classes is quite a bit of tedious work. An easier method of getting the data
from your database directly into memory is by using the SqlDataAdapter. The SqlDataAdapter
is pretty much obsolete technology, but I want to briefly discuss it for
completeness, and because you might still find code that uses it. It’s also a
little introduction to the next chapter, Entity Framework.

The SqlDataAdapter maps the
data in your database to a DataSet or DataTable. A DataTable
is like your database table in C# memory. A DataSet
is a collection of DataTables with references,
constraints, etc. What’s awesome is that CREATE,
UPDATE, and DELETE
statements can be generated automatically. Using DataTables,
you can also pass table parameters to SQL Server.

To populate a DataTable
with people from the database, we simply call the Fill
method on the SqlDataAdapter and give it a DataTable.

Code Listing 24: Populating a DataTable

 public DataTable GetPeople()

 {

 DataTable people = new DataTable();

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "SELECT Id,
 FirstName, LastName, DateOfBirth, GenderId FROM dbo.Person", connection))

 using (SqlDataAdapter adapter = new SqlDataAdapter(command))

 {

 adapter.Fill(people);

 }

 return people;

 }

The SqlDataAdapter takes a SqlCommand in its constructor. The SqlCommand is the command that’s used to select the
data. There are a few overloads, one taking the SQL SELECT
statement and a connection string. The adapter manages the connection, so there
is no need to open and close it explicitly.

Now this looks wonderful. The code is a lot shorter than
what we had previously, but how can we read the data from a DataTable? Unfortunately, the DataTable
is a collection of rows, which in turn is a collection of columns. So to read
everything, we have to loop through the rows and then loop through the columns.
The columns can be accessed by index or name. The values are all objects—so there
is still (un)boxing, and we still need to cast—and even DBNull is still DBNull.
So basically, mapping to custom C# objects is just as hard as with the SqlDataReader.

The strength of DataSets
becomes apparent when you use them directly in your code. This makes sense, for
example, in WinForms environments with binding. You can update your DataSet directly and the DataSet
keeps track of changes.

Code Listing 25: Update, insert, and delete with the adapter

 public void
 UpdatePeople()

 {

 DataTable people = new DataTable();

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand(

 "SELECT Id,
 FirstName, LastName, DateOfBirth, GenderId FROM dbo.Person", connection))

 using (SqlDataAdapter adapter = new SqlDataAdapter(command))

 using (SqlCommandBuilder builder = new SqlCommandBuilder(adapter))

 {

 // Creates columns,
 defines primary keys, foreign keys, etc.

 adapter.FillSchema(people, SchemaType.Source);

 adapter.Fill(people);

 // If you followed my
 examples, I am the first

 // person in the
 database, let's change my name.

 people.Rows[0]["FirstName"] = "John";

 // Delete Bill.

 people.Rows[1].Delete();

 // And add Satya.

 people.Rows.Add(new object[] { null, "Satya", "Nadella", new
 DateTime(1967, 8, 19), 1 });

 // Sander is updated,
 Bill is deleted, Satya is added.

 // All in a single line
 of code!

 adapter.Update(people);

 }

 }

First, I’ve added the SqlCommandBuilder
and passed it the SqlDataAdapter. The SqlCommandBuilder builds CREATE,
UPDATE, and DELETE
SqlCommands based on the SELECT query. It doesn’t do this particularly well, by
the way, so you may want to do this manually (the commands are properties of
the adapter). After that, we must fill the schema using FillSchema, of the DataSet
or DataTable. This will fetch the table’s schema
from the database and provide the DataTable with
information on columns, types, primary keys, etc. The Fill
method gets the data. After that we can update, delete, and insert rows to the DataTable. Each DataRow
will keep track of its own state and changes. Last, but not least, the SqlDataAdapter is able to insert, update, and delete
the data (in that order) from the DataTable.

As I mentioned, you can use DataTables
to pass in table-valued parameters to stored procedures. You can create the
following type and procedure in your database to try this one out.

Code Listing 26: Create type and stored procedure

 CREATE TYPE
 FirstAndLastName AS TABLE

 (

 FirstName
 VARCHAR(256) NOT NULL,

 LastName
 VARCHAR(256) NULL

)

 GO

 ALTER PROCEDURE
 InsertPeople

 @People
 FirstAndLastName READONLY

 AS

 BEGIN

 SET NOCOUNT ON;

 INSERT INTO dbo.Person

 (FirstName, LastName)

 SELECT FirstName,
 LastName

 FROM @People

 END

 GO

Now, to execute this stored procedure from code, we can
pass in a DataTable.

Code Listing 27: DataTable as parameter

 public void
 ExecInsertPeople()

 {

 string connectionString =

 ConfigurationManager.ConnectionStrings["SuccinctlyDB"]?.ConnectionString;

 using (SqlConnection connection = new SqlConnection(connectionString))

 using (SqlCommand command = new SqlCommand("InsertPeople", connection))

 {

 command.CommandType = CommandType.StoredProcedure;

 DataTable people = new DataTable();

 people.Columns.Add("FirstName", typeof(string));

 people.Columns.Add("LastName", typeof(string));

 people.Rows.Add(new object[] { "Tim", "Cook" });

 people.Rows.Add(new object[] { "Mark", "Zuckerberg" });

 command.Parameters.Add("People", SqlDbType.Structured).Value = people;

 connection.Open();

 command.ExecuteNonQuery();

 }

 }

There’s a lot more you can do with DataTables and DataSets,
but I wouldn’t recommend using this technology for database access unless you
absolutely have to.

ADO.NET abstractions

As you’ve seen, I’ve used SqlConnections,
SqlCommand, and SqlDataReaders
in the previous examples. They work well with SQL Server, but what if you’re
using Oracle, MySQL, or another relational database?

One thing you should know about ADO.NET is that there are
a lot of abstractions. The SqlConnection, for
example, inherits from DbConnection, which
implements the IDbConnection interface. If
you’re working with Oracle, you’re probably going to make use of an OracleConnection, which inherits from DbConnection. Likewise, we have an OleDbConnection and an OdbcConnection.
They work together with OracleCommand, OleDbCommand, and OdbcCommand,
which all inherit from DbCommand. Other vendors
have implemented their own versions of these classes.

So you see, if you know how to use one, you pretty much
know how to use them all. You can use one of these base classes throughout your
software and get the correct type using Dependency Injection instead. The DbProviderFactory class is a base factory for
constructing specific types of connections, commands, parameters, etc.

Chapter 3 Entity Framework Database First

Everything in the previous chapter was a lot of typing, a
little tedious, and not very easy to do. It’s not very hard to create an
abstraction layer that automatically maps fields from your select statements to
properties on C# objects, but it won’t be very pretty. To do something like
that properly is a little harder, but fortunately a few such abstraction layers
already exist. In this chapter we’ll take a look at Microsoft’s Entity
Framework (EF), an Object Relational Mapper (ORM) that does everything we did
in the previous chapter, but a lot easier.

An ORM, as the name implies, maps objects from a
relational database to objects in your code. The Entity Framework has two modes
of development. First, and most traditional, is that EF generates C# classes
from an already-existing database. Second is that you code out your classes
with properties, foreign key relations, and primary keys, and have EF generate
the database for you. These two modes are called Database First and Code First,
respectively. A third option exists where EF creates C# classes from an
existing database, but pretends that you’ve used code first, allowing you to use
Code First with an existing database. In this chapter I’m going to show you
Database First and Code First. From there it shouldn’t be difficult to use the
Code First from an existing database option as well.

To extensively discuss EF, we’d need a not-so-succinct
book. In fact, I’ve got a book counting over 600 pages from an older version of
EF when Code First wasn’t even an option. Add to that the LINQ queries you can
write, for which you can read a completely different book, and the T4 Template
technology that EF uses, and you’ll understand that I can really only scratch
the surface of EF in this chapter. The goal of this chapter is not to make you
an expert of EF, but to apply the lessons from the previous chapter to an ORM
and discuss some of the finer “gotcha!” details of EF that will save you a lot
of gray hairs later on.

Database First

Let’s start with Database First, as it is pretty
straightforward. Create a new C# Console Application Project, save it, and
install EntityFramework through NuGet. In the menu, go to Tools > NuGet
Package Manager > Manage NuGet Packages for Solution. Browse and
search for EntityFramework, select your project in the list of projects
on the right side of the window, and install it. Now, add a new item to your
project and choose ADO.NET Entity Data Model, and name it SuccinctlyExamplesModel.

The Entity Data Model Wizard presents you with a few
options; select EF designer from database. In the next screen, you can
set up your connection properties and pick a database. Pick the SuccinctlyExamples database you created. After you’ve
created your connection, you get a tree view with database objects. Check the
tables (dbo.Gender and dbo.Person),
make sure you check Pluralize or singularize generated object names, and
click Finish.

You’ll see a file called SuccinctlyModels.edmx
added to your project. The edmx (Entity Data Model eXtension) file holds all
your mappings from database to code. Right-clicking the edmx file and selecting
Open with allows you to select an XML Editor and view your mappings in XML.
You should never need the XML, but if you get deeper into EF, you’ll find
yourself editing or inspecting it more than you’d like. For this tutorial,
though, we’re not going to look at it. So if you double-click on the edmx file,
you’ll get a diagram showing all the database objects you imported earlier. If
you want to import more objects or update existing objects, simply right-click
somewhere in the model and click Update Model from Database.
Unfortunately, if you import a table, you will always get all properties, and
an update will also update all already imported tables.

Figure 8: Entity Framework diagram

Notice that Gender has a People attribute and Person
has a Gender attribute (if you named GenderId just Gender, the
Gender attribute would’ve been named Gender1, yuck!). The thin line between the entities
describes the relation. A Gender has 0 to n People (the * part, 0..n)
and a Person has 0 or 1 Gender
(the 0..1 part, 0
because it’s nullable). As you can see, these are called Navigation Properties. You can rename everything here
if you like (for example, if you had Gender1, you
could rename it to GenderEntity, or you could
rename Gender to GenderId
and Gender1 to just Gender).
You may also remove properties from the model if they’re nullable, but if you
ever want them back, you’ll have to add them manually. The best part is that
these are now C# classes you can use.

Code Listing 28: Using your entities in C#

 Person p = new
 Person();

 p.FirstName
 = "Mark";

 p.LastName = "Zuckerberg";

 p.Gender = new
 Gender();

The generated code can be found when you expand the edmx
file. This is where you will find two T4 files (Text Template Transformation
Toolkit); they have the .tt extension. You can expand those as well. One will
have your generated entities, and the other will have your Context class, the
code representation of your database. The T4 files are templates that will
generate your classes using the edmx file. Remember, you can edit the generated
files, but once they’re regenerated, your changes will be overwritten. If you
want to generate some additional code, your best bet is to edit the T4 files.

The connection string, as you might have guessed, is added
to your app.config file. The EF connection string has some extra metadata
included. It’s good practice to put your entities in a separate project and
reference that project from other projects. The App.config or Web.config of the
startup project will need this connection string, or you’ll get a runtime
error. So be sure to copy it (including metadata).

Figure 9: T4 files

If you want to add some code to a single class, you can
make use of the partial keyword. All your
entities are created as partial classes. That means you can “extend” them in a
different file.

Code Listing 29:
A partial class

 public partial class Person

 {

 public string FullName

 {

 get

 {

 // FirstName and
 LastName are defined

 // in this class, but
 in another file.

 return $"{FirstName} {LastName}";

 }

 }

 }

Let’s get some data from our database. The first thing we
need is our context class, which inherits from DbContext.
It has a property for each of our tables and a method for each of our stored
procedures.

Code Listing 30: Use the DbContext

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 // Access the database.

 List<Person> people = context.People.ToList();

 }

That’s how easy it is to fetch all people from your
database and load them into memory!

IQueryable

Unfortunately, there’s a lot going on in that one line of
code, so let’s elaborate. First of all, context.People
doesn’t really do anything yet—it’s the ToList
that forces database access. This is a VERY important detail. The context.People property is a DbSet<Person>,
which in turn is an IQueryable<Person>.
The IQueryable<T> interface looks like any
collection (IEnumerable) on the outside, but
acts very differently. When using IQueryable, a
query is built for the data source, in this case SQL Server. The query is only
executed when the IQueryable is enumerated, like
when ToList or foreach
is called. That allows you to create queries using Where,
OrderBy, or Select
without ever going to the database. If we had to access the database many times,
you could imagine this becoming very slow indeed!

Let’s build a more advanced query.

Code Listing 31: An IQueryable<Person>

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 // Don't access the
 database just yet...

 IQueryable<Person> query = context.People

 .Where(p => p.GenderId == 2)

 .OrderBy(p => p.LastName);

 // Access the database.

 List<Person> women = query.ToList();

 }

This also allows you to create queries based on conditions.

Code Listing 32: Build queries using conditionals

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 bool orderResults = false;

 // Don't access the
 database just yet...

 IQueryable<Person> query = context.People

 .Where(p => p.GenderId == 2);

 if (orderResults)

 {

 query = query.OrderBy(p => p.LastName);

 }

 // Access the database.

 List<Person> women = query.ToList();

 }

As you can see, this is a lot less code than we
used in Chapter 1. As an added bonus, the code reads a lot easier, too (well,
once you get used to the LINQ syntax). Creating different queries, depending on
your needs, becomes a breeze, as you can reuse parts of your queries (like
object-oriented SQL queries!).

Another concern here is parameterization. Don’t worry,
everything is parameterized just fine. It’s just that in the previous example
there are no parameters. We query for the people with a GenderId of 2. The
value 2 is a constant, so our query won’t have
any parameters. If, somewhere else in the code, we query for a GenderId of 1, we’ll
get a new query with a new plan. So suppose we want to parameterize this query.
What would we need to do? Easy—create a variable!

Code Listing 33:
A parameterized query

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 // Not parameterized.

 context.People.Where(p => p.GenderId == 2).ToList();

 int female = 2;

 // New, parameterized
 query.

 // Doesn't re-use the
 previous plan.

 context.People.Where(p => p.GenderId == female).ToList();

 int male = 1;

 // Parameterized, uses
 same query plan as above.

 context.People.Where(p => p.GenderId == male).ToList();

 }

Of course there are a few downsides to IQueryables as well. You don’t have any influence on
what queries are generated. Some queries are so monstrous that it really pays
off to just write them yourself, and this is where some SQL knowledge really
comes in handy. Sometimes EF just can’t generate clean SQL queries from your IQuerable, for example, when joining two completely
unrelated tables. EF will generate a query and it will get you your data, but
it won’t be fast or elegant. Speaking of performance, using EF comes with a
performance penalty. If those few milliseconds matter (and often they don’t),
use the techniques we discussed in Chapter 2.

Another thing you cannot do in an IQueryable
is use any function or property that is not known to the data source. That
makes sense, as the query will have to be translated to SQL. The following
code, for example, will not work.

Code Listing 34: Invalid query

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 Person sander =
 context.People.SingleOrDefault(p => p.FullName == "Sander Rossel");

 }

Unfortunately, it compiles just fine. Only at runtime,
when actually compiling the query, will you get an error because there is no FullName column in your table, so be sure to always
run your queries against your actual data source. You might be surprised that
the following query will work as expected.

Code Listing 35: Valid code

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 List<Person> peopleWithS = context.People

 .Where(p => p.FirstName.ToLower() == "sander")

 .ToList();

 }

The ToLower function is
known in SQL Server, and the EF team made sure that this function translates
correctly. In theory, the StartsWith function
could be translated to SQL (using SQL’s LEFT) as
well, but this is not supported. For some additional supported functions (such
as LEFT, RIGHT, DIFFDAYS, etc.), check out the System.Data.Entity.DbFunctions and System.Data.Entity.SqlServer.SqlFunction classes. It’s
also possible to add your own functions to EF, but this is outside the scope of
this book.

There’s another pitfall to the code in the previous
example. Consider the following code.

Code Listing 36: Lazy-loading

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 List<Gender> genders =
 context.Genders.ToList();

 foreach (Gender g in genders)

 {

 foreach (Person p in g.People)

 {

 Console.WriteLine($"{p.FirstName} is a {g.Description}.");

 }

 }

 }

How often will this code access the database? The only
correct answer is “I don’t know.” We first get all the possible genders, which
is one database call. But then we loop through the genders and we’re accessing
the People of that Gender.
Guess what? The People are not yet loaded into
our memory, so each time we access People, EF
will access the database to get all people for that Gender.

In this case we have three genders, so we have the call to
get all genders, and then an additional call for each gender to get the people,
which is a total of four database calls. In many scenarios you really don’t
know how many entities you’re getting, and before you know it, you’re doing
thousands of database calls! This is called lazy-loading, and can be turned off
in your EF diagram. However, with lazy-loading turned off, your People will not be loaded and it may seem you have no
people at all. I’ve seen systems get very slow because of lazy-loading,
but when used correctly, it’s pretty awesome. Luckily, EF does some caching for
us, so once a Navigation Property is loaded, EF won’t access the database
again. “Think before you query” is the message!

Let’s take a look at some cool extensions, which make
working with IQueryable a lot easier. Working
with dates is always a pain, so let’s create an OlderThan
extension method. I must confess I got the SQL query from Stack Overflow and
just converted it to LINQ. It’s accurate enough for the example.

Code Listing 37: OlderThan extension method

 public static class Extensions

 {

 public static IQueryable<Person> OlderThan(this IQueryable<Person> q, int age)

 {

 return q

 .Where(p => (DbFunctions.DiffHours(p.DateOfBirth, DateTime.Today) / 8766) > age);

 }

 }

The usage is simple and readable. The original query would
be unreadable to anyone, but it’s clear what it does from the name, (OlderThan). It’s a win-win situation.

Code Listing 38: OlderThan usage

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 List<Person> people = context.People.OlderThan(45).ToList();

 }

Remember that the function or property you’re using in an IQueryable must be present in the data source. That
means creating an interface and using that on different types to reuse your
extension method is only possible when the interface member has the same name
as your entity member. So if you have multiple entities with a DateOfBirth and you want to reuse your extension
method, that’s possible, but only when you implement the extension method as a
generic function (after all, IQueryable works on
entities, not on interface types). The generic must be a class, because a struct
may never be an entity.

Code Listing 39: Using an interface

 public interface IDateOfBirth

 {

 DateTime? DateOfBirth { get; set; }

 }

 public partial class Person : IDateOfBirth

 {
 }

 public static class Extensions

 {

 public static IQueryable<T>
 OlderThan<T>(this
 IQueryable<T>
 q, int age)

 where T
 : class, IDateOfBirth

 {

 return q

 .Where(p => (DbFunctions.DiffHours(p.DateOfBirth, DateTime.Today) / 8766) > age);

 }

 }

If you have multiple entities with different property
names (for example, Machine with ManufacturedDate), you’re out of luck. Maybe Expression Trees can help you there.

To get the query that is generated by EF and send to the
database, you can use your DbContext.Database.Log
property, which is an Action<string> and
outputs any generated SQL to the delegate. You could, for example, log to the
Console.

Code Listing 40: Output SQL to the Console

 using (CodeFirstContext context = new CodeFirstContext())

 {

 context.Database.Log = Console.Write;

 context.People.Where(p => p.GenderId == 1).ToList();

 }

 Console.ReadKey();

Expression trees

Another detail in working with IQueryable
is that it contains many extension methods that are also defined on IEnumerable. Or so it seems. The following code looks
the same for the IEnumerable and the IQueryable, but only one of the two will make your
application come to a grinding halt!

Code Listing 41: IEnumerable vs. IQueryable

 using (var context = new SuccinctlyExamplesEntities())

 {

 IQueryable<Person> peopleQuery = context.People;

 IEnumerable<Person> peopleEnumr = context.People;

 peopleQuery.Where(p => p.FirstName == "Sander").ToList();

 peopleEnumr.Where(p => p.FirstName == "Sander").ToList();

 }

The two Where methods
differ in input parameter, and in what they return. The IQueryable takes an Expression<Func<Person,
bool>> as input and returns an IQueryable,
whereas the IEnumerable takes a Func<Person, bool> as input and returns an IEnumerable.

Figure 10: IQueryable.Where

Figure 11: IEnumerable.Where

The Expression<Func<SomeType,
bool>> is basically a representation of the Func<SomeType, bool> in an object graph. So
instead of passing in a method like in the IEnumerable.Where,
you pass in some object that represents the method. In this case the compiler
creates the object graph, so you don’t need to worry about that.

In the previous example, that means the IEnumerable.Where enumerates over the collection,
forcing a roundtrip to the database (after all, the IEnumerable
variable is actually an IQueryable), and only
after that does it execute the Where function. As
a result, you’ll get ALL people from the database instead of just those with
the FirstName “Sander”. So be very careful that you
don’t accidentally break your IQueryable chain.

Just for fun, here’s the Expression<Func<Person,
bool>> the compiler actually created from that lambda expression.

Code Listing 42: An Expression<Func<Person, bool>>

 ParameterExpression parameter = Expression.Parameter(typeof(Person), "p");

 Expression property = Expression.Property(parameter, typeof(Person).GetProperty("FirstName"));

 Expression constant = Expression.Constant("Sander");

 Expression binary = Expression.Equal(property, constant);

 Expression<Func<Person, bool>>
 lambda = Expression.Lambda<Func<Person, bool>>(binary, parameter);

 peopleQuery.Where(lambda).ToList();

This means that when you want to add your own (extension)
methods, you’ll have to keep in mind that you’re dealing with Expressions. And if you want to create some extra
layers of abstraction, you might even need to create your own Expressions manually. Creating Expressions manually is a little too advanced for this
book, but let’s take a look at an extension method.

What happens if you want to include, for example,
additional select logic in your extension method? Just be sure to put in an Expression. Failing to do so will give no errors or
warnings, but will call the method on IEnumerable,
forcing a database call before your action executes.

Code Listing 43: Extension with selector

 public static List<T>
 SelectOlderThan<T>(this
 IQueryable<Person> q, int age,

 Expression<Func<Person, T>>
 selector)

 {

 return q

 .Where(p => (DbFunctions.DiffHours(p.DateOfBirth, DateTime.Today) / 8766) > age)

 .Select(selector)

 .ToList();

 }

Usage is, again, pretty straightforward.

Code Listing 44: Usage of SelectOlderThan

 var people =
 context.People.SelectOlderThan(45, p =>

 new

 {

 Name = p.FirstName,

 DateOfBirth = p.DateOfBirth

 });

CRUD

Let’s check out the CRUD operations. You won’t believe how
easy it is.

Code Listing 45: CRUD operations

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 // Update Sander.

 Person sander =
 context.People.FirstOrDefault(p => p.FirstName == "Sander");

 sander.FirstName = "John";

 // Create Google CEO.

 Person sundar = new Person();

 sundar.FirstName = "Sundar";

 sundar.LastName = "Pichai";

 sundar.DateOfBirth = new DateTime(1972, 7, 12);

 sundar.GenderId = 1;

 context.People.Add(sundar);

 // Delete Mark
 Zuckerberg.

 Person mark =
 context.People.FirstOrDefault(p => p.FirstName == "Mark");

 context.People.Remove(mark);

 context.SaveChanges();

 }

That’s all there is to it! It’s so easy, you don’t really
need further explanation.

Remember that I said “SELECT * …”
can be very harmful to a system. What we’re doing now is basically that. If we
update our model and Person gets 100 new fields,
our system suddenly gets a lot slower. We can fix this using Select.

Code Listing 46: Using Select

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 // Using an anonymous
 type.

 var satyaAnon = context.People.Where(p
 => p.FirstName == "Satya")

 .Select(p => new

 {

 Id = p.Id,

 FirstName = p.FirstName,

 LastName = p.LastName

 }).SingleOrDefault();

 // Use the anonymous
 type here...

 // Using a known type.

 PersonModel satyaKnown = context.People.Where(p
 => p.FirstName == "Satya")

 .Select(p => new PersonModel

 {

 Id = p.Id,

 FirstName = p.FirstName,

 LastName = p.LastName

 }).SingleOrDefault();

 // Use the known type
 here,

 // pass it to other
 functions,

 // or return it from
 this function.

 }

Using this style of querying makes a difference for your
update and delete statements as well. Since you don’t want to get the entire
entity anymore, you’ll have to get the ID (given you don’t have it yet) and use
that to do your updates and deletes. In most scenarios, you’ll have the IDs at
your disposal, so the selects are not necessary.

Code Listing 47: CRUD without getting entire entities

 using (var
 context = new SuccinctlyExamplesEntities())

 {

 // Update Sander.

 // Get Sander's ID.

 var sander = context.People.Where(p
 => p.FirstName == "Sander")

 .Select(p => new { Id = p.Id }).SingleOrDefault();

 // Create a new Person,
 but set the Id to an existing one.

 Person update = new Person();

 update.Id = sander.Id;

 // Attach Person with
 the given Id.

 context.People.Attach(update);

 // Fields that are set
 after attach will be tracked for updates.

 update.FirstName = "John";

 // Delete Mark
 Zuckerberg.

 // Get Mark's ID.

 var mark = context.People.Where(p =>
 p.FirstName == "Mark")

 .Select(p => new { Id = p.Id }).SingleOrDefault();

 Person delete = new Person();

 delete.Id = mark.Id;

 context.People.Attach(delete);

 context.People.Remove(delete);

 context.SaveChanges();

 }

That was a quick overview of the Entity Framework. We’ve
addressed creating a model, importing tables, creating queries,
parameterization, lazy-loading, and CRUD operations. Unfortunately, as you’ve
seen, there are many “gotchas” when working with EF (or any ORM, for that
matter). I know these things because I’ve done them wrong in the past. I’ve
seen entire teams, with years of experience, still fall for some of the
pitfalls laid out in this chapter. Often have I heard “EF sucks because it is
so slow,” but more often than not, this was the result of not parameterizing,
not knowing when IQueryables are executed (or
even just not knowing about IQueryable at all),
lazy-loading, and selecting too much data (or just poor database design, but
that’s another subject altogether).

Chapter 4 Entity Framework Code First

Now that we’ve seen EF Database First, how to use it, and
some of its quirks, let’s try Code First. You can simply write the classes that
would be generated by Database First yourself. Code First is especially awesome
when you’re working in a team and everyone has their own local copy of the
database. Updating databases and inserting data is very easy, and can even be
done automatically—no more having to run and update scripts manually. Once
again, create a new Console Application and install EF (using NuGet).

Now, add the following classes to your project. Also make
sure you add the CodeFirst connection string to
your config file (without EF metadata, just a “plain” connection string).

Code Listing 48: EF Code First classes

 public class Person

 {

 public int
 Id { get; set;
 }

 public string FirstName { get; set; }

 public string LastName { get; set;
 }

 public DateTime? DateOfBirth { get; set; }

 public int?
 GenderId { get; set;
 }

 public Gender Gender { get; set;
 }

 }

 public class Gender

 {

 public int
 Id { get; set;
 }

 public string Code { get; set;
 }

 public string Description { get; set; }

 public virtual ICollection<Person> People { get; set; }

 }

 public class CodeFirstContext : DbContext

 {

 public CodeFirstContext()

 : base("CodeFirst")

 { }

 public DbSet<Person> People { get; set; }

 }

Those classes may look familiar. It’s pretty much what EF
database first generated for us earlier. Please note the virtual keyword for the ICollection.
At runtime, EF will create a proxy class for Gender,
overriding the People property, and have it
return some ICollection that supports lazy-loading.
Now simply run your application with the following code.

Code Listing 49: Run EF Code First

 using (CodeFirstContext context = new CodeFirstContext())

 {

 context.People.Add(new Person

 {

 FirstName = "Sander",

 Gender
 = new Gender

 {

 Id = 1,

 Code = "MALE",

 Description = "A
 true man!"

 }

 });

 context.SaveChanges();

 }

This will actually create your database and insert a new
person and a new gender.

If you take a look at the database, you’ll notice your
tables are called dbo.People and dbo.Genders. Genders is
not a DbSet in your DbContext,
but it is still a table in the database. EF figured that out through Person. There is also a table called dbo.__MigrationHistory (note there are two underscore
characters); we’ll look at that in a bit. Let’s first fix the plural naming by overriding
OnModelCreating in the DbContext.

Code Listing 50: Non-pluralizing DbContext

 public class CodeFirstContext : DbContext

 {

 public CodeFirstContext()

 : base("CodeFirst")

 { }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)

 {

 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 }

 public DbSet<Person> People { get; set; }

 }

There are a lot of conventions like that, and you can add
your own. Delete the database by right-clicking on it in SSMS and click Delete.
In the dialog, check Close existing connections. When you run the
application again, your tables will now be named dbo.Person
and dbo.Gender. If you don’t delete your
database, you’ll get a runtime exception—we’ll fix that in a minute.

Looking further at the database, you’ll notice that all
string properties are translated to nvarchar(max).
You probably don’t want this. Furthermore, FirstName
is non-nullable, so let’s fix that too. This is actually pretty easy using data
annotations (in the System.ComponentModel.DataAnnotations
namespace). Simply add some Attributes to your
model.

Code Listing 51: DataAnnotations

 [Required]

 [MaxLength(256)]

 public string FirstName { get; set; }

 [MaxLength(256)]

 public string LastName { get; set;
 }

Again, delete your database and run the code again. These
fields will now be generated as nvarchar(256) not null
and nvarchar(256) null, respectively. You can
tweak a lot more, for example, by not having an autogenerated key, mapping to
another column name in the database, changing generated types, or making
properties named Key a primary key by default.

Code Listing 52: Non-autogenerated key

 [DatabaseGenerated(DatabaseGeneratedOption.None)]

 public int
 Id { get; set;
 }

By overriding OnModelCreating
of Dbcontext, you have a lot of flexibility in
customizing generation.

Code Listing 53: Customizing in OnModelCreating

 protected override void OnModelCreating(DbModelBuilder modelBuilder)

 {

 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 modelBuilder.Entity<Person>()

 .Property(p => p.DateOfBirth)

 .HasColumnName("DOB")

 .HasColumnType("smalldatetime");

 modelBuilder.Properties()

 .Where(p => p.Name == "Key")

 .Configure(p
 => p.IsKey());

 }

By using the NotMappedAttribute,
a property is ignored by EF altogether (for example, a FullName
property that you’re going to compose using FirstName
and LastName).

Code Listing 54:
A property that's not mapped to the database

 [NotMapped]

 public int
 FullName { get; set;
 }

You probably get the gist of Code First: write code and
configuration and have EF create a database for you.

Migrations

Up to now, we had to delete the database every time we
made a change to our model. That, of course, won’t work very well in the real
world. EF has a few options for the creation of a database: CreateDatabaseIfNotExists (the default), DropCreateDatabaseIfModelChanges, and DropCreateDatabaseAlways. These are called DatabaseInitializers. You probably see some trouble
with those. If you have any data or nonmapped entities in your database, you’ll
lose them when EF drops the database and recreates them (imagine that happening
in production). Newer versions of EF introduced the MigrateDatabaseToLatestVersion.
Up to now that hasn’t worked so well—after all, you get an exception when your
model changes.

To enable Migrations, use the NuGet Package Manager
Console. In the menu, select Tools > NuGet Package Manager >
Package Manager Console. Make sure the console targets the project that
has your DbContext class. Next, type enable-migrations.

Figure 12: Enable Migrations using NuGet Console

You’ll find that a class called Configuration
will be created for you.

Code Listing 55: Generated Configuration class

 namespace CodeFirst.Migrations

 {

 using System;

 using System.Data.Entity;

 using System.Data.Entity.Migrations;

 using System.Linq;

 internal sealed class Configuration : DbMigrationsConfiguration<CodeFirst.CodeFirstContext>

 {

 public Configuration()

 {

 AutomaticMigrationsEnabled = false;

 }

 protected override void Seed(CodeFirst.CodeFirstContext context)

 {

 // ...

 }

 }

 }

Automatic migrations

For now, you’ll want to change AutomaticMigrationsEnabled
to true.

Code Listing 56: Enable automatic migrations

 AutomaticMigrationsEnabled = true;

The next thing we need to do is use this configuration in
our DbContext. We can set it in the constructor.

Code Listing 57: Configure the DbContext for migrations

 public CodeFirstContext()

 : base("CodeFirst")

 {

 Database.SetInitializer(new MigrateDatabaseToLatestVersion<CodeFirstContext, Migrations.Configuration>("CodeFirst"));

 }

Now add a new class, Company,
and give Person two new properties, CompanyId and Company.
Make sure CompanyId is nullable, or you might
get an error saying that an already existing person cannot be updated (after
all, it would have NULL for non-nullable CompanyId).

Code Listing 58: Make a change to the model

 public class Person

 {

 // ...

 public int?
 CompanyId { get; set;
 }

 public Company Company { get; set;
 }

 }

 public class Company

 {

 public int
 Id { get; set;
 }

 public string Name { get; set;
 }

 }

Now, run the application using the following code (the
previous code won’t work, as Gender 1 will be
re-inserted, but it already exists and we do need some query, or EF won’t
update the database).

Code Listing 59: Force automatic migration

 using (CodeFirstContext context = new CodeFirstContext())

 {

 context.People.ToList();

 }

Now, do a few migrations (make some more changes) and
check out the dbo.__MigrationHistory table.
That’s where everything is stored, so you can check if some migration was
successful.

You may have noticed that adding classes and properties is
no problem, but when you try to delete something, you will get an AutomaticDataLossException. That may not come as a
surprise, as you don’t expect that removing a property in a model leads to data
loss in a database. However, that may still be exactly what you want. You can
configure this in the Configuration class.

Code Listing 60: AutomaticMigrationDataLossAllowed

 public Configuration()

 {

 AutomaticMigrationsEnabled = true;

 AutomaticMigrationDataLossAllowed = true;

 }

Because automatic migrations may be dangerous (after all,
you have little control over what’s happening), there is an option to disable database
initialization (including migrations) in your app.config (or web.config) file.
It’s actually not a bad idea to disable automatic migrations on your production
environment. Chances are that your customers don’t even allow it because
database changes must go through a DBA or be requested in writing.

Code Listing 61: Disable database initialization in config

 <?xml version="1.0" encoding="utf-8"?>

 <configuration>

 <!-- ... -->

 <entityFramework>

 <!-- ... -->

 <contexts>

 <context type="CodeFirst.CodeFirstContext, CodeFirst"

 disableDatabaseInitialization="true" />

 </contexts>

 </entityFramework>

 <!-- ... -->

 </configuration>

Another option is to disable it in code.

Code Listing 62: Disable database initialization in code

 public CodeFirstContext()

 : base("CodeFirst")

 {

 Database.SetInitializer<CodeFirstContext>(null);

 }

By doing this, you must update your database manually. We’ll
look at some deployment options later.

Code First migrations

An alternative to automatic migrations is Code First migrations.
Disable your automatic migrations by setting AutomaticMigrationsEnabled
on false in the Configuration
class. Now make some changes to your models, for example, by adding FullName to your Person
class.

Code Listing 63: FullName property

 [MaxLength(512)]

 public string FullName { get; set; }

Now open up the NuGet Package Manager Console again, make
sure the project with your DbContext is selected,
and type add-migration “Add Person.FullName”. In
the Migrations folder, you now get a new file called [current_date_and_time]_Add
Person.FullName containing a class named AddPersonFullName.
In it, there’s some C# update “script” since your last migration. It also has a
“script” to revert those changes.

Code Listing 64:
A code first migration

 namespace CodeFirst.Migrations

 {

 using System;

 using System.Data.Entity.Migrations;

 public partial class AddPersonFullName : DbMigration

 {

 public override void Up()

 {

 AddColumn("dbo.Person", "FullName", c => c.String(maxLength: 256));

 }

 public override void Down()

 {

 DropColumn("dbo.Person", "FullName");

 }

 }

 }

In the Package Manager Console, type update-database, and your database will be updated.
You can run your code and query again against an updated database. Make sure
you don’t give two migrations the same name, or you will get name conflicts in
your C# code.

Now add another property on Person,
for example, int Age, and run another add-migration “Add Person.Age” and update-database. Unfortunately, for whatever reason,
your last database change has to be rolled back. Luckily, Up and Down methods are
generated, so this should be easy. To revert updates, simply update to an older
migration and newer migrations will be rolled back. In the console, type “update-database -TargetMigration:”Add Person.FullName”.
Run it and Add Person.Age will be reverted.

As I was playing around with migrations, I created FullName, removed it, added it again, and as a result
I was left with two C# classes AddPersonFullName.
No problem, I just deleted the oldest and ran my migration. However, when
rolling back, I got a conflict as Add Person.FullName
was ambiguous. Luckily, everything you do is saved in dbo.__MigrationHistory
and you can easily get the unique ID for every migration from there. Simply run
“update-database -TargetMigration:”2016052111803411_Add
Person.FullName” instead to remove the ambiguity. That said, it’s best
not to mess up your migrations too much, or you’ll find yourself doing a lot of
tedious manual fixing.

Figure 13: dbo.__MigrationHistory

Another option for you to consider is to get the actual
SQL script that Migrations generates. For example, I added Person.FullName and generated the script. You can
generate the script using update-database -Script
from the Package Manager Console. You’ll get something like the following
script.

Code Listing 65: Generated SQL script

 ALTER TABLE [dbo].[Person] ADD [FullName] [nvarchar](512)

 INSERT [dbo].[__MigrationHistory]([MigrationId],
 [ContextKey], [Model], [ProductVersion])

 VALUES
 (N'201605221001289_AutomaticMigration', N'CodeFirst.Migrations.Configuration', 0x1F/*...*/ , N'6.1.3-40302')

Seeds

Another thing that makes Code First pretty awesome is the
ability to seed your database with some initial data. You may have already
noticed it when we created the Configuration
class, but there is a Seed method with some
example in a comment. So let’s make sure that we at least have our Genders in place and a Person
to use for testing.

Code Listing 66: The Seed method

 protected override void Seed(CodeFirstContext context)

 {

 context.Genders.AddOrUpdate(new[]

 {

 new Gender { Id = 0, Code = "UNKNOWN", Description = "Not saying" },

 new Gender { Id = 1, Code = "MALE", Description = "Male" },

 new Gender { Id = 2, Code = "FEMALE", Description = "Female" }

 });

 context.People.AddOrUpdate(p =>

 new

 {

 FirstName = p.FirstName,

 LastName = p.LastName

 },

 new Person

 {

 FirstName = "Sander",

 LastName = "Rossel",

 GenderId = 1

 });

 }

We can simply insert our three Genders.
EF will check if the ID is already present in the database and do an insert or
update based on that. The Id of Gender is not an autonumbering field, so we have to
set it ourselves. The Id of a Person is not known to us, though, since it’s
autonumbering. With autonumbering, there is no way for us to insert a Person with a specific Id,
and EF will just happily insert the same Person every
time (giving it some autonumber Id). We can,
however, specify an alternative means of looking up a specific entity. This is
the first parameter to AddOrUpdate, which takes
an anonymous object containing all the fields that make up for a unique Person. In this example, I’ve taken the combination of
FirstName and LastName
to be the alternative key. If the combination of FirstName
and LastName isn’t present in the database, EF
will insert the Person, otherwise it will do an
update. Now if you run the code, these rows will be inserted into the database
if they’re not already present.

If you would like to start with a fresh database
(including an initial test set) every time you start your debug session, you
may opt for a custom IDatabaseInitializer. I
already mentioned a few, so let’s simply create one. The following initializer
will always recreate a database and seed some data.

Code Listing 67:
A custom DatabaseInitializer

 public class CleanDbInitializer : DropCreateDatabaseAlways<CodeFirstContext>

 {

 protected override void Seed(CodeFirstContext context)

 {

 context.Genders.AddOrUpdate(new[]

 {

 new Gender { Id = 0, Code = "UNKNOWN", Description = "Not saying" },

 new Gender { Id = 1, Code = "MALE", Description = "Male" },

 new Gender { Id = 2, Code = "FEMALE", Description = "Female" }

 });

 context.People.AddOrUpdate(p =>

 new

 {

 FirstName = p.FirstName,

 LastName = p.LastName

 },

 new Person

 {

 FirstName = "Sander",

 LastName = "Rossel",

 GenderId = 1

 });

 }

 }

To get it working, simply go to your DbContext and change the constructor. Make sure you
don’t have any migrations (delete the Migrations folder), or your database
won’t actually get deleted, and you will get an exception.

Code Listing 68: Usage of CleanDbInitializer

 public CodeFirstContext()

 : base("CodeFirst")

 {

 Database.SetInitializer(new CleanDbInitializer());

 }

It is also possible to change the initialization using
your App.config or Web.config file. Simply remove the SetInitializer
from your DbContext constructor and add the
following value in your config file.

Code Listing 69: MigrateDatabaseToLatestVersion with Configuration in config

 <contexts>

 <context type="CodeFirst.CodeFirstContext, CodeFirst">

 <databaseInitializer

 type="System.Data.Entity.MigrateDatabaseToLatestVersion`2[[CodeFirst.CodeFirstContext,
 CodeFirst],

 [CodeFirst.Migrations.Configuration, CodeFirst]], EntityFramework"/>

 </context>

 </contexts>

Now we’re switching to our custom initializer.

Code Listing 70: Custom initializer in config

 <contexts>

 <context type="CodeFirst.CodeFirstContext, CodeFirst">

 <databaseInitializer type="CodeFirst.CleanDbInitializer, CodeFirst" />

 </context>

 </contexts>

As you can see, by using Code First, Migrations, and Seeds,
working with multiple local database instances while still making daily
database updates becomes a breeze.

Chapter 5 SQL Server Data Tools

Using the Visual Studio SQL Server Data Tools, you can
create databases in pretty much the same way you can in SQL Server Management
Studio. It gets better though—you can compare and deploy databases with ease.
For this chapter, I have undone all the changes we made to the
SuccinctlyExamples database in the previous chapters, so I’m starting fresh
again.

If you followed all my steps during the Visual Studio
installation, you should have the SQL Server Data Tools. If you haven’t, you
can change your installation by going to the Windows Control Panel, then Programs
and Features. In the list of programs, look for Microsoft Visual Studio
X (with Update Y), select it, and click Change. Now make sure
you select the Data Tools.

I should mention that I got a new laptop between writing
the previous chapters and this one, so instead of LAPTOP23\SQLEXPRESS, you’ll
see CSS1446. All the above still applies, of course; it’s just a name change.

Database Project

Start Visual Studio—you don’t even have to start or open a
project. In the menu, go to View and then SQL Server Object Explorer.
You should now get a window on the right or left side of the screen (depending
on your settings) showing two nodes, SQL Server and Projects. Right-click SQL
Server and then click Add SQL Server. You should now see a tree view
similar to that in SSMS.

As you right-click on the objects, you’ll notice that you
can add tables, columns, and other objects. You can generate scripts of objects,
execute scripts, and add or alter data. It’s all pretty cool that you can do
this in Visual Studio, but you could do this in SSMS as well.

Now here comes the awesome part—right-click the SuccinctlyExamples
database, and click Create New Project. Choose a name for your project,
ideally the name of your database (I was lazy and kept the default, Database1).
You’ll probably want to check Create new solution, and possibly Create
directory for solution; they’re off by default, so I’ll leave it to you. Click
Start, and a new database project will be created. In the new solution,
your Solution Explorer should now look something like this.

Figure 14: Database project Solution Explorer

An alternative method for creating a database project,
even when you don’t have an existing database, is by simply starting a new
project and choosing SQL Server Database Project from the installed
templates. In the new project, you can create objects and deploy them, or
import an existing database by right-clicking your database project in the
Solution Explorer, selecting Import, and then selecting Database.

Figure 15: The SQL Server Database Project template

Let’s continue with the Database1 project. By double-clicking
on a table, you get to the designer, which is pretty similar to that of SSMS.
Here you can add new columns and foreign keys, change columns, etc. In the
lower part of the screen you’ll see the SQL script for the table; it changes as
you change the table.

Publishing

Before you do anything, let’s assume the
SuccinctlyExamples database is production ready, so we want to deploy it.
Right-click your database project in the Solution Explorer and choose Deploy.
In the Publish Database window, select a database connection. The
following window is a bit confusing, as you’re presented some recent
connections, but your current connection is hidden. To show your current
connection details, click Show Connection Properties. You can just pick
the SuccinctlyExamples database for now.

Figure 16: The Connect window

Back in the Publish database window, pick a database name.
We’re going to create a new database, so let’s pick a name that doesn’t exist
yet. I’ve called it ProductionDb. In a real environment you’d probably
have the same database name, but another server instance. Since we don’t have
spare servers lying around, we’re going to use the same server instance, but
using a different database name. You can choose a name for the generated script
as well. You can enable or disable numerous options under the Advanced menu as
well, most notably if data loss is allowed. Unless you uncheck Block
incremental deployment if data loss might occur, you’ll never be able to
delete columns in tables that have rows. There are too many options to discuss
them all, but be sure to look at them.

Now you can either view the script, examine it, change it,
and run it (in the upper left), or just run the script directly. If you run the
script directly, it will be placed in the bin folder of your project. Also, a
Data Tools Operations window opens, allowing you to open the script directly. Whichever
method you choose, you should now have a new ProductionDb database that is the
same as the SuccinctlyExamples database. That’s pretty awesome!

Updating

Now that we have deployed our database, we’re going to get
change requests. Let’s add a column to the Person
table. Double-click the Person.sql script in the Visual Studio Solution
Explorer. You can right-click in the white space of the table designer to add
or remove designer columns such as Length, Description, and Identity.
Now simply add a column, let’s say Title. Save
it.

Figure 17: Title column

Now publish the database again, but this time, simply
publish to the SuccinctlyExamples database. Instead of a CREATE script, Visual Studio will now generate an ALTER script. If you run it (directly or by generating
the script and then running), your database will now have the new Title column.

Updating a table or column—that is, changing it—results in
a refactorlog file (or an update thereof). This file is necessary for Visual
Studio to figure out that it has to rename the table or column rather than drop
the table or column with the old name and create the table or column with the
new name. Once you publish the change, a system table is created on your
database called __RefactorLog (note the two
underscores). The table contains a single column indicating which schema
changes have been published.

Comparing

Another cool feature of the Data Tools is to compare
databases. We have a few options: compare database schemas against other
databases, compare schemas against database projects, and compare data between
databases.

Let’s start with comparing schemas between databases.
Right-click on the database project and then click Schema Compare. In
the window that opens, you can now choose a source and a target. The source is
your current project by default. Change the source to the SuccinctlyExamples
database and the target to the ProductionDb database. Now simply click Compare
in the upper-left corner, and Visual Studio will visually show you the
differences. You can now, again, update the target automatically or generate a
SQL script and run it manually. You can also pick objects to exclude from the
generated script in the Action column. So now,
simply update the ProductionDb any way you want.

We can also compare a project to a database, which is
basically an alternative to Deploy (except it won’t recognize renames). It
works exactly the same as a compare between databases, except that your source
is now a database project. Things get interesting when you put the database as
your source and the project as your target (you can easily switch them with the
button between source and target). This enables you to make changes to your database
from an external source and then import them into your project.

So let’s open up SSMS and make a change to the Person table. The Visual Studio table designer has no
support for Computed Columns, so we’re going to add one. In SSMS, open the
designer for the Person table and add the
following column.

Figure 18: A Computed Column

The formula is the same as the one I used in the IQueryable<Person> OlderThan extension method in
the Entity Framework chapter. Now go back to Visual Studio and do a compare
between the SuccinctlyExamples database and your database project. The column
shows up as being added. You cannot generate a script this time, which kind of
makes sense as you’re not updating a (scripted) database, but a Visual Studio
SQL Database Project. Simply click Update, and the column gets added to
your project.

The data compare is a little different. Let’s make sure we
have some data in our database. Run the following script on the
SuccinctlyExamples database to insert some data.

Code Listing 71: INSERT data

 INSERT INTO
 [dbo].[Gender] ([Id], [Code],
 [Description]) VALUES (1, N'UNKNOWN', N'Not
 saying')

 INSERT INTO
 [dbo].[Gender] ([Id], [Code],
 [Description]) VALUES (2, N'MALE', N'Male')

 INSERT INTO [dbo].[Gender] ([Id], [Code],
 [Description]) VALUES (3, N'FEMALE', N'Female')

This is the kind of data you want to keep synchronized
between your databases. Users, even admins, may not be able to enter this data
anywhere in the application, and without it your application does not work
correctly. So let’s make sure we have all the data we need. For some reason we
can’t do a data compare from our database project, so go to the SQL Server
Object Explorer instead. Right-click on either the SuccinctlyExamples
database or the Gender table and select Data
compare. Set the SuccinctlyExamples database as your source (it
probably already is) and the ProductionDb as your target. Click Next
to pick the tables and views you wish to compare, and then click Finish.
You now get an overview of tables that were compared. Only tables and views
that have matching names, column names, column types, and primary keys can be
compared. Names are case-sensitive. Once compared, you can (as always) create a
script and manually execute it, or automatically update the target database.

Figure 19: SQL data compare

While what we’ve seen here is incredibly useful, it comes
at a cost, and with certain dangers. There was a time when I did all my
deployments manually using schema compare. And then I accidentally deployed a
change that was not meant to go into production yet, and caused an entire
factory to go down for about five minutes. Oops! If you’re not careful, you
might execute scripts that you didn’t quite mean to execute. A lot of scripts
are generated, and they can be executed with a single button press, so be
careful.

Last, but not least, I wanted to mention the data-tier application
(for some reason abbreviated as DAC). A DAC is basically a sort of database project.
The difference between the two is mostly the way in which it is published. In data-tier
applications, publish packages are created by developers, which can then be
used by DBAs to perform the updates. If you right-click on the Databases
node in the Object Explorer in SSMS, you’ll notice the options “Deploy
Data-tier Application…” and “Import Data-tier Application.” It is possible to
convert a database project to a DAC, and vice
versa. I must confess I’ve never used it, so I won’t say much about it. If
you want to know more about them, I suggest you read about it on MSDN and try
it out for yourself.

Chapter 6 Troubleshooting

Once in a while queries go awry. Unfortunately, there can
be many reasons for this. Maybe your database has grown to the point where a
query that always worked well is now very slow. Maybe one of your environments
is missing an index. Maybe a query is using a cached query plan that is not
optimal for the current parameter value. In this chapter we’re going to look at
how we can identify troublesome queries and how we can solve these issues.

For a few examples, we’re going to need a database with a
little body. Microsoft has a sample database we can use called Adventure Works.
You can download it from CodePlex.
Alternatively, you can Google (or Bing) AdventureWorks2014 and see what shows
up. Download the Adventure Works 2014 Full Database Backup.zip file and
unzip the .bak file. In SSMS, right-click the Databases node in your
Object Explorer and then click Restore Database… in the context menu. In
the Restore Database window, enable Device, click the button “…”
and add the .bak file you just unzipped. Then simply click OK, and the
database should now be available.

Figure 20: Restoring Adventure Works

Profiling

First of all, we’ll need to know which queries are running
slowly. For this (and many more) we can use the profiler. I recommend using the
profiler often when developing, as it shows you just about everything that
happens in a database. For example, you may have a well-performing piece of
code, but maybe it only performs well because you’re testing locally with few
data. The profiler may show you that you’re actually sending thousands of
queries to your database (maybe because of EF lazy-loading, or because you’re
executing queries in a loop). I’ve often run into such scenarios that run
smoothly on a test environment, but bring the database to a grinding halt in
production (and that’s never fun).

To start the profiler, start up SSMS, and in the menu, go
to Tools and then SQL Server Profiler. You can also run it as a
stand-alone application from your start menu (or wherever you have it
installed). If you start it from SSMS, it will automatically start a new trace.
If you’re starting it from Windows directly, you can find New Trace
under the File menu. Next, you will have to log in to the instance you
want to trace. Be careful when tracing a production environment, as it will put
a load on the system. Connect to your local instance, and you should get a
window captioned “Trace Properties.” On the General tab, you can name
your trace, save to file, or pick a template. We’re going to ignore this tab.
Instead, go to the Events Selection tab. On this tab you can find all
kinds of events that are raised by the database. A few are already selected for
you, but there are many more. Check the Show all events and Show all
columns boxes, and you’ll see what I mean. For now we’re interested in the
following events: “Stored Procedures -> RPC:Completed and SP:StmtCompleted”
and “TSQL -> SQL:BatchCompleted”. Now click Run to run
the trace.

Figure 21: Events Selection tab of Trace

If you now go into SSMS and query a table, or you run the
application we created in the previous chapter, you will see the queries in the
profiler. And, unfortunately, you may see a whole lot more (I’m also seeing
queries from my Report Server and some other stuff I’ve got running). You can
pause the trace and put some filters in place.

Figure 22: Trace Pause and Properties

In the Events Selection tab, go to Column
Filters… and filter on ApplicationName like “EntityFramework”. If you
haven’t manually changed the Application in the connection string of your
DbContext, you will now only see queries that are fired from your application.
A filter on LoginName and/or NTUserName can also come in handy, especially when
you have millions of queries a day and you’re only interested in a single user.
Another filter I use quite often is Duration Greater than or equal; set it to
5000 (milliseconds) and you’ll get all the queries that take at least five
seconds. If one query pops up a lot, you may need to have a look at it. Anyway,
with your ApplicationName filter in place, run some query from your application
and look it up in the profiler. I ran context.People.Where(p => p.GenderId ==
1).ToList();.

Figure 23: Query in the profiler

As you can see, EF has some overhead, and only the fifth
row is my actual query. By looking at the generated query, I can see 1 = [Extent1].[GenderId] was not parameterized (as I
intended in my query). Looking further at the columns, we can see the database
needed 18 reads, a single write, and 19 milliseconds to come up with the
result. When looking for troublesome queries, you might want to keep an eye on
those values. Higher isn’t necessarily bad, but it may be an indication that something
can be optimized. Now we can also copy and paste the query and run it in SSMS
manually.

The profiler can be used for many things, for example,
trace deadlocks (event “Locks -> Deadlock graph”). Just look at all the
events and columns and you’ll see that we’d need another book to fully
understand just this one tool. For my day-to-day activities, the BatchCompleted and StmtCompleted
events, together with the Duration filter, prove to be invaluable.

Sometimes you might just want to run the trace for a while.
Luckily, you can set up your trace and then in the File menu, go to Export
and then Script Trace Definition and For SQL Server 2005 - 2014…
Save the script somewhere and open it. Be sure to replace InsertFileNameHere
(for example, C:\Traces\MyTrace will do, but make sure the folder
exists) and run the script. Now it doesn’t matter whether the profiler is
running or not; everything will be saved to the trace file. Of course you could
do this using the Trace Properties, but I wanted to show you the script as
well. By the way, if you’re having trouble opening the file, try to run the
profiler as administrator.

To see which traces are running, you can use the following
script.

Code Listing 72: View SQL traces

 SELECT * FROM fn_trace_getinfo(default)

To stop, start, and delete a trace, you can use the
following.

Code Listing 73: Stop, start, and delete a trace file

 SELECT * FROM fn_trace_getinfo(default)

 --
 The file we created got traceid 3.

 --
 Yours may be different, check first.

 DECLARE @TraceId INT = 3

 --
 Stop the trace.

 EXEC sp_trace_setstatus @TraceId, 0

 --
 Start the trace.

 EXEC sp_trace_setstatus @TraceId, 1

 --
 To delete the trace, first stop it.

 EXEC sp_trace_setstatus @TraceId, 0

 EXEC sp_trace_setstatus @TraceId, 2

Query plans

Now that you know how to get the queries that may cause
trouble, you want to find out why exactly they cause trouble. The most obvious
way to do this is by looking at the query plan. Before a query is executed, SQL
Server determines the approximate quickest way to fetch all the data. I say
approximate because SQL Server knows how to do one thing in different ways, so
for example, a JOIN can be realized internally
by a LOOP, MERGE,
or HASH JOIN. Take two JOINS
in a single query and we can have 3 * 3 = 9 different ways to execute this
query. Add a WHERE clause, and things grow
exponentially. A single query can have hundreds or even thousands of different
plans. SQL Server takes an educated guess as to what plan might be optimal.
We’ve already talked a bit about this a bit in the parameterization chapter,
but now we’re going to look at some actual plans.

Unfortunately, Syncfusion doesn’t have a Succinctly
e-book on query plans (yet?), but you could always check out this free
e-book on query plans by SimpleTalk.

For now, open SSMS, browse to the AdventureWorks
database, and open a new query window. Right-click on the empty query window,
and in the context menu, check Include Actual Execution Plan. For some
extra information, run the following statements in your query window.

Code Listing 74: Enabling statistics

 SET STATISTICS IO ON

 SET STATISTICS TIME ON

These statistics will be shown in your Messages tab after
you run a query. You can delete the statements from your window; they will be
active in this window until you close it or until you explicitly turn it off
again (SET STATISTICS X OFF). Now run the
following query (in the same query window).

Code Listing 75: A SQL query with JOIN

 SELECT p.FirstName + ' ' + p.LastName AS FullName, *

 FROM Person.Person p

 JOIN Person.EmailAddress
 e ON

 e.BusinessEntityID
 = p.BusinessEntityID

You now get the Results, Messages, and an additional tab,
the Execution plan.

Figure 24: An execution plan

You should read the execution plan from right to left (the
SELECT is executed last). The thicker an arrow
between two nodes, the more data that was handled by that node. SQL Server
starts by doing a scan on the Person table
(using the primary key). It then computes the scalar FullName.
It does another scan on EmailAddress using the
primary key for that table. It then does a merge join between Person and EmailAddress.
Finally, it selects the data. To interpret this, you must have a little
knowledge on the inner workings of SQL Server, and quite possibly, algorithms.
Knowing the alternatives is a must. So let’s dissect this plan and check out
the alternatives.

We first start with an Index Scan. The alternative is an Index
Seek. An Index Scan simply reads through the rows in your input (in this case
an index table) and takes out the rows that match the queries criteria. In this
case we want all rows, so we can’t really get faster than just fetching all
rows like we do now. Let’s say we expect only one row to be returned because we
filter on an ID—surely an entire table scan would be a waste of resources.
That’s when SQL Server uses an Index Seek, which only goes through pages and
rows that contain qualifying data. Somewhere in between all rows and none or
one row is a turning point where one of the two is faster than the alternative.

The MERGE JOIN is the
fastest join around. It only works when two sets of data are ordered in the
same way, and when two rows have to match on a key. In this case, both tables
are ordered on BusinessEntityID. MERGE JOIN reads a row from one input and compares it
with a row from the other input. If the rows don’t match, the row with the
smaller value can be discarded and the next row is read until all rows have
been read. The maximum number of reads necessary for this operation is the
number of rows in the first input, plus the number of rows in the second input.

The alternatives here are LOOP
JOIN and HASH JOIN. LOOP JOIN loops through all rows in the first input,
and for each row, it loops through all rows of the second input until a match
is found. This is less efficient than a MERGE JOIN,
as the maximum number of reads is now the number of rows in input one times the
number of rows in input two.

The HASH JOIN can require
the most processing behind the scenes, and if you encounter it, you probably
should check your design. The HASH JOIN
algorithm creates a hash table for the smaller input of the join (and possibly
writes this to disk if short on memory), and then compares them to the other
values using a hash match function. For small inputs this can be very
efficient, but if you have bigger inputs, this might slow down your query
considerably.

As we can see, this query is optimal; we have the optimal search
algorithm and the optimal JOIN algorithm. The
next query is far from optimal, and since the data set is relatively small,
even though it’s not giving us any troubles, we’re going to optimize it for the
sake of practice.

Code Listing 76:
A query with a suboptimal plan

 SELECT FirstName,
 MiddleName, LastName,
 Title

 FROM Person.Person

 WHERE MiddleName >
 'Z'

 OPTION
 (RECOMPILE)

I have added the OPTION
(RECOMPILE) so that we’re sure SQL Server always generates a new plan
for this query (so we’re not looking at cached plans). Here is the generated
plan.

Figure 25: A suboptimal query plan

Here we see that we’re doing an Index Scan, but when we
execute the query, we only get one result. So we’re scanning the entire table
(almost 20,000 rows) for just one row. Also notice the Key Lookup. This happens
when an index is used that does not have all the requested values. In this case,
the Index Scan is done on IX_Person_LastName_FirstName_MiddleName,
but we’re requesting more fields than just those three because we also want Title. The Key Lookup searches for the row index and
retrieves all missing fields. Of course, SQL Server needs to join the results
of the Index Scan and the Key Lookup, which costs even more time and resources.

 	
 [image:]

 	
 Tip: The
problem with slowly executing queries is that sometimes they run very slowly
(like maybe an hour or more). In such cases, “Include Actual Execution Plan” is
not an option, as it requires you to run the query, but you can’t wait for
hours for it to finish, taking up resources and possibly blocking other
queries. For such cases, SQL Server has an option in the context menu, “Display
Estimated Execution Plan.” This option does not run the query and only creates
the estimated plan. It may not give you the actual plan, but more often than
not it’s pretty accurate, and you can at least inspect the plan and identify
possible bottlenecks.

Indexing

So we have this query that uses an index, but still needs
to look up the master row in the primary key index. That happens when an index
is not covering. When all requested fields from a table are contained in
a single index, this index is called a covering index. In this case, Title is missing from the index. So let’s add Title to the index. We can do two things: add Title to the actual index, or include it in the index.

To understand the difference, we must understand that an
index is a virtual sorting of one or more fields. IX_Person_LastName_FirstName_MiddleName
is sorted on LastName, then FirstName, and then MiddleName.
That means SQL Server can use the Binary Search
algorithm to quickly find all rows with a specific LastName,
then for all people with that LastName, it can
quickly find all people with a specific FirstName.
Finally, for people with that LastName and FirstName, it can find all people with a specific MiddleName.

If we added Title to the
index, we could find people with a specific name and specific Title as well. Unfortunately, indexing comes with a
price. Every time one of the fields is updated, the index must be updated as
well. Adding Title to the index means the index
must be updated when any LastName, FirstName, MiddleName,
or Title is updated. So inserts, updates, and
deletes on this table will now take the performance hit. We’re probably never
going to query for such a specific name with a specific title, so we’d rather
not do that.

Luckily we have a second choice: include Title as an included field. It’s not included in the
sorting, but it is included in the index, meaning that whenever Title is updated, the index doesn’t have to update.
The only cost we have then is that of some extra memory usage, a fair price to
pay if it speeds up our query. To include a field in an index, find the index
in the Object Explorer, right-click, choose Properties, and add the
field on the Included columns tab (and NOT the “Index key columns” tab).
Now let’s execute the query again.

Changing the index worked, since our plan no longer
requires a Key Lookup.

Figure 26: Key Lookup eliminated

Unfortunately, we still have an Index Scan instead of an
Index Seek. Apparently our current indexes just don’t cut it. You might as well
remove the Title from the included columns now,
as we’re going to create an index that’s completely optimized for this query.
Simply add an index and put MiddleName in the
Index key columns, and FirstName, LastName, and Title in
the Included columns.

Code Listing 77: Index on MiddleName

 CREATE NONCLUSTERED INDEX IX_Person_MiddleName

 ON Person.Person

 (

 MiddleName

)

 INCLUDE
 (FirstName,
 LastName, Title)

If we run the query again, we will see that we have
eliminated the Index Scan as well, and the query is now optimal.

Figure 27: Optimal query plan

In some cases, SQL Server may suggest indexes for you. For
example, run the following query and inspect the query plan.

Code Listing 78:
Non-indexed query

 SELECT *

 FROM Sales.SalesOrderHeader

 WHERE OrderDate = '20120101'

Obviously it would be nice if we had an index on OrderDate. The SalesOrderHeader
table has over 30,000 rows, and currently OrderDate
has no index, and an index scan is performed. A specific order date never
returns huge result sets, though, so scanning the entire index is never optimal
for this query. Luckily, SQL Server sees that, too, and gives you a hint. You
can right-click it and select Missing index details, and it will open a
new query window with the index script. Be sure to take a good look at it, as
it will not always be a desired index! For example, a SELECT
* may result in an index having all columns that are not part of the
ordering to be included in the index. In such cases, it’s probably better to
not include any columns at all, and just stick to the index columns.

Figure 28: A missing index hint

Now, you may think it’s a good idea to optimize every
query, but it’s not. Imagine a query taking five minutes to complete—surely
that must be optimized, right? What if the query runs only once a month?
Suddenly those five minutes are not so important anymore. Optimizing it may
take hours of work that you’ll have back after years of running the query. If
the five minutes is a daily routine and users are waiting for it, by all means,
optimize! Even a query that takes an hour can be fine if it is, for example, an
automated job that runs at night. Optimizing it might mean that other processes
that run constantly during production may incur a performance hit. Finally, as
we will see in the next section, an optimization may not always be optimal for
all cases.

Parameter sniffing

Sometimes your query runs really slow when executed from
your C# code, while other times it completes in a few milliseconds. Multiple
things can happen here. First, and we’ll get to this, is blocking queries.
Another option is parameter sniffing. What SQL Server does when it encounters a
new query that uses parameters is that it creates a query plan that is
(approximately) optimal for the current value of the parameter. Remember that
query plans are cached and reused if the same query is executed again. However,
if the same parameterized query now has a different value for its parameter,
the plan may now be suboptimal. Luckily we can replicate this issue quite
easily (although we won’t see the performance hit, as our database is still too
small).

First we need some parameterized query. An ad hoc query in
a query window is not parameterized unless you use sp_executesql,
an in-built procedure that runs a string as SQL and can optionally take
parameters. This is what C# sends to the database if you run a parameterized
query. Running a string isn’t very easy to type, though (as you have to escape
it yourself), so let’s go with the alternative, a stored procedure. Create the
following procedure in the AdventureWorks database (never mind that this
procedure is pretty useless and becomes literally unusable after some million
orders).

Code Listing 79: SP GetOrdersByDate

 CREATE PROCEDURE
 GetOrdersByDate

 @OrderDate
 DATETIME

 AS

 BEGIN

 SET NOCOUNT ON;

 SELECT *

 FROM Sales.SalesOrderHeader

 WHERE OrderDate <
 @OrderDate

 END

You have to know one thing about SQL Server when dealing
with plans. SQL Server keeps all kinds of statistics internally. When you’re
going to execute this procedure, SQL Server will inspect @OrderDate and make some assumptions based on its
statistics. That makes things a little easier for us, too. At this point we
know there is no index on OrderDate. As a
result, with so many rows, SQL Server will probably just scan the table for
each value we assign to @OrderDate. We can
simply test this by executing this query with a few values and inspecting the
plan.

Code Listing 80: Multiple plans for the same query

 DBCC FREEPROCCACHE

 EXECUTE GetOrdersByDate @OrderDate
 = '20100101'

 DBCC FREEPROCCACHE

 EXECUTE GetOrdersByDate @OrderDate
 = '20120101'

 DBCC FREEPROCCACHE

 EXECUTE GetOrdersByDate @OrderDate
 = '20150101'

DBCC FREEPROCCACHE clears
all query plans from the cache, so we know SQL Server isn’t reusing any plans.
We get the same plan for each parameter.

Figure 29: Equal plans

That isn’t helping our example very much. It also seems,
since @OrderDate = ‘20100101’ returns 0 rows, that
a table scan isn’t optimal. So let’s make SQL Server know this, too. Let’s put
an index on OrderDate.

Code Listing 81: Index on OrderDate

 CREATE NONCLUSTERED INDEX IX_SalesOrderHeader_OrderDate

 ON Sales.SalesOrderHeader

 (

 [OrderDate]
 ASC

)

With this index in place, run the previous query again,
with all the DBCC FREEPROCCACHE, and surely the
first query plan will look a little different! It now does an Index Seek on IX_SalesOrderHeader_OrderDate, which is a lot better
for this particular query.

Unfortunately, we can’t go around and execute DBCC FREEPROCCACHE before every query. In fact, never
run DBCC FREEPROCCACHE on a
production server unless you know what you’re doing. Run the following query,
check the query plans, and you will see the effects of parameter sniffing.

Code Listing 82: Parameter sniffing

 DBCC FREEPROCCACHE

 EXECUTE GetOrdersByDate @OrderDate
 = '20100101'

 EXECUTE GetOrdersByDate @OrderDate
 = '20120101'

 EXECUTE GetOrdersByDate @OrderDate
 = '20150101'

The query plans are now equal again for each execution. Unfortunately,
this is far from optimal for order dates 2012 and 2015. At this point you may
be wondering, “Why did it use such suboptimal plans?” or “Why is my query so
slow?” When you hover over a node in the query plan, you get to see all kinds
of statistics that may be helpful in figuring out what went wrong.

Figure 30: Plan step statistics

The really interesting values here are the Estimated Number of Rows and the Actual Number of Rows. When SQL Server expects no rows
to be returned, the estimated number will be 1, and SQL Server will optimize
for that. However, the actual number of rows returned was 31,465. That’s a huge
difference, and it’s an indicator that you’re probably missing an index, your
statistics are out-of-sync, or you’ve become victim of parameter sniffing.

Parameter sniffing isn’t a bad thing by itself, but it has
its quirks. There are a few things we can do to solve parameter sniffing.
First, when you’re pretty sure each plan will be different, you can recompile
your queries. Recompilation makes sure that a new plan is created every time
the query is executed. You will get an optimal plan for order dates 2010, 2012,
and 2015, but every execution will incur a performance hit for the addition
plan creation. You can recompile single queries or entire procedures.

Code Listing 83:
Recompiling queries and procedures

 ALTER PROCEDURE
 GetOrdersByDate

 @OrderDate
 DATETIME

 AS

 BEGIN

 SET NOCOUNT ON;

 SELECT *

 FROM Sales.SalesOrderHeader

 WHERE OrderDate <
 @OrderDate

 OPTION (RECOMPILE)

 END

 GO

 --
 OR

 ALTER PROCEDURE
 GetOrdersByDate

 @OrderDate
 DATETIME

 WITH RECOMPILE

 AS

 BEGIN

 SET NOCOUNT ON;

 SELECT *

 FROM Sales.SalesOrderHeader

 WHERE OrderDate <
 @OrderDate

 END

Another option is to tell SQL Server to optimize for a
specific value. In this case, we’re pretty sure this procedure will be called
with an order date that’s pretty close to today, so 99 out of 100 times we
expect to fetch thousands of rows.

Code Listing 84:
Optimize for value

 ALTER PROCEDURE
 GetOrdersByDate

 @OrderDate
 DATETIME

 AS

 BEGIN

 SET NOCOUNT ON;

 SELECT *

 FROM Sales.SalesOrderHeader

 WHERE OrderDate <
 @OrderDate

 OPTION (OPTIMIZE FOR (@OrderDate = '20150101'))

 END

Order date 2010 will have a suboptimal query, but 2012 and
2015 run fine and don’t incur the performance penalty for creating the plan. In
case you’re not sure about an ideal value, you may optimize for unknown. SQL
Server will generate a plan based on some statistical average of your data
distribution. The downside, of course, is that this optimization is
unpredictable and may still result in parameter sniffing issues.

Code Listing 85: Optimize for unknown

 OPTION (OPTIMIZE FOR UNKNOWN)

In some cases, SQL Server makes a wrong call considering
the index to use. Or maybe it’s not wrong, just not what you’d like it to be. A
while ago I found myself in such a situation. A coworker had created a rather
lengthy stored procedure and the execution wasn’t all that it was supposed to
be. Sure enough, we were missing an index. We added the index and cleared the
query cache, but nothing happened. A quick look at the execution plan revealed
that SQL Server wasn’t using our index! In this instance, we just wanted it to
use our index.

Code Listing 86: Forcing an index

 ALTER PROCEDURE [dbo].[GetOrdersByDate]

 @OrderDate
 DATETIME

 AS

 BEGIN

 SET NOCOUNT ON;

 SELECT *

 FROM Sales.SalesOrderHeader

 WITH (INDEX(IX_SalesOrderHeader_CustomerID))

 WHERE OrderDate <
 @OrderDate

 END

Surely that index makes no sense! The fun part is that if
you run it now and look at the query plan, SQL Server will give you a hint that
you’re missing an index on OrderDate (with all
other fields included, which we don’t want).

Yet another option is to make a local variable from your
input parameter. The idea is that SQL Server optimizes queries for a given
value: the one that is passed to the stored procedure. However, when you use a
local variable, SQL Server cannot know the value of that variable in the query
plan building stage. As a result, using a local variable will create the same
output as OPTION (OPTIMIZE FOR UNKNOWN).

Code Listing 87: Using a local variable

 ALTER PROCEDURE [dbo].[GetOrdersByDate]

 @OrderDate
 DATETIME

 AS

 BEGIN

 SET NOCOUNT ON;

 DECLARE @LocalOrderDate DATETIME
 = @OrderDate

 SELECT *

 FROM Sales.SalesOrderHeader

 WHERE OrderDate <
 @LocalOrderDate

 END

As you can see, there are some solutions to parameter
sniffing when working in SQL Server. You can apply the same methods in C# when
working with ADO.NET. You’re building the query, so you can also include hints
like OPTION (RECOMPILE), OPTION
(OPTIMIZE FOR …), or WITH (INDEX(…)). Unfortunately, when
using Entity Framework, you’re not building your own queries. But you have a
few options. You can use stored procedures for troublesome queries (in fact,
some people always use stored procedures for everything, but that’s
another discussion). You can also use plain ADO.NET for troublesome queries. If
you’re stuck with EF, you can use EF Interceptors (EF6 and onwards only), as
discussed in the next chapter.

Chapter 7 Interception, Locking, Dynamic Management Views

In this chapter we'll look at three relatively advanced
topics: customizing default behaviors by intercepting SQL execution from C# code,
the issues around SQL locking, and performance tuning using Dynamic Management
Views.

Interception

SQL interception using C# is not easy, and is probably best
avoided. It does give you some low-level control over the generated SQL and
additional actions EF should take when it’s executing, or has executed,
queries. Interception is based around a couple of interfaces, most notably System.Data.Entity.Infrastructure.Interception.IDbInterceptor.

There are different interceptors for different use cases,
such as executing queries (IDbCommandInterceptor),
working with transactions (IDbTransactionInterceptor),
and connections (IDbConnectionInterceptor). For our case, we
need the IDbCommandInterceptor, but we derive from the
base class DbCommandInterceptor (which implements IDbCommandInterceptor).

As you can see, each method (SomethingExecuting
or SomethingExecuted) gets a DbCommand,
which can be manipulated, and a DbCommandInterceptionContext.
Now we can simply concatenate “ OPTION (RECOMPILE)”
to any SELECT query.

Code Listing 88: RecompileInterceptor

 public class RecompileInterceptor : DbCommandInterceptor

 {

 public override void ReaderExecuting(DbCommand command, DbCommandInterceptionContext<DbDataReader> interceptionContext)

 {

 base.ReaderExecuting(command,
 interceptionContext);

 AddOptionRecompile(command, interceptionContext);

 }

 public override void NonQueryExecuting(DbCommand command, DbCommandInterceptionContext<int>
 interceptionContext)

 {

 base.NonQueryExecuting(command,
 interceptionContext);

 AddOptionRecompile(command, interceptionContext);

 }

 public override void ScalarExecuting(DbCommand command, DbCommandInterceptionContext<object> interceptionContext)

 {

 base.ScalarExecuting(command,
 interceptionContext);

 AddOptionRecompile(command, interceptionContext);

 }

 private void
 AddOptionRecompile<T>(DbCommand command, DbCommandInterceptionContext<T>
 interceptionContext)

 {

 // DbContexts.Any
 indicates the query is not EF overhead.

 if (interceptionContext.DbContexts.Any()
 &&

 command.CommandText.StartsWith("SELECT", StringComparison.OrdinalIgnoreCase))

 {

 command.CommandText += " OPTION(RECOMPILE)";

 }

 }

 }

To use an IDbInterceptor,
we can use the DbInterception class. Unfortunately,
this class registers IDbInterceptors globally, so once
registered, an interceptor will be used for every query in your entire
application (including other threads). You can, of course, also unregister them.

Code Listing 89: Add an interceptor

 RecompileInterceptor interceptor = new RecompileInterceptor();

 DbInterception.Add(interceptor);

 using (CodeFirstContext context = new CodeFirstContext())

 {

 context.Database.Log = Console.Write;

 context.People.Where(p => p.GenderId == 1).ToList();

 }

 DbInterception.Remove(interceptor);

 Console.ReadKey();

Interceptors are powerful tools. They can be used for
logging, additional security, canceling queries, or altering queries, among
other things.

Locking and deadlocks

Another issue you may be facing when queries run slowly is
locking. I’ve been in situations where queries such as SELECT
Field FROM Table WHERE Id = X were running very slowly. We know now that
such queries should be very fast, and that parameter sniffing shouldn’t be a
problem since the plan should be the same for every value of X. Chances are
this query is simply not running because some other query is blocking access to
the specified table. We can easily simulate such scenarios. First of all, I
want to remind you that it’s possible to run only parts of a script in a single
query window. Simply select the part you want to execute, and execute it.

Let’s create a blocking query. Open up a query window and
execute the following.

Code Listing 90:
A blocking query

 BEGIN TRAN

 UPDATE Production.Product

 SET Name = 'Adjustable Racer'

 WHERE ProductID = 1

SQL Server locks the row for ProductID
1. Different kinds of locks exist, and SQL
Server will determine the best locking strategy, depending on your query. For
example, not specifying a WHERE clause would
probably end up in a table lock. While a certain object is locked, rows, pages,
tables, and other objects can’t usually access it. Usually a lock is lifted
when a transaction completes, but in this case we started a transaction and
never committed or rolled back. So the transaction will just stay open and lock
this row. Locking is not a bad thing, though; it prevents other processes from
querying data that is not committed yet, preventing dirty reads.

Open up a new window and execute the following query.

Code Listing 91:
A blocked query

 SELECT *

 FROM Production.Product

 WHERE ProductID = 1

You will notice this query will start executing and simply
never complete. It’s actually waiting for our first query to complete.

There are a few fixes here. First of all, we should
examine why our first query is taking so long to complete and see if we can
rewrite it so it finishes sooner. Second, we could set our TRANSACTION ISOLATION LEVEL to (READ COMMITTED) SNAPSHOT.
This means that whenever SQL Server locks a resource, it makes a copy of that
resource and then uses the copy when selecting data, so your SELECT queries aren’t blocked, but still return committed
data.

SNAPSHOT ISOLATION is not
in the scope of this book, but a quick Google search will no doubt give you a
lot of resources on the subject. The solution I’m going to show you here is to
set the ISOLATION LEVEL of the SELECT query to READ
UNCOMMITTED so that it will read uncommitted data. In many cases this is
a fine solution, since the chances of dirty reads (reading uncommitted data)
are very small, and dirty reads may even be acceptable. If your SELECT query is still running, you can stop it by
hitting the Cancel Executing Query button or with Alt + Break.
Alternatively, you could return to the UPDATE
query window and there execute ROLLBACK TRAN, causing
the transaction to end and the SELECT query to
finish. If you decide to end your transaction, be sure to start it again for the
following example.

So, assuming you have a lock on ProductID
1, you can tell a SELECT query to do dirty reads
by giving it the NOLOCK hint.

Code Listing 92: Dirty reads WITH (NOLOCK)

 SELECT *

 FROM Production.Product
 WITH (NOLOCK)

 WHERE ProductID = 1

If you have multiple statements and would like to execute
them all using dirty reads, you can set your TRANSACTION
ISOLATION LEVEL instead.

Code Listing 93: Dirty reads with READ UNCOMMITTED

 SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

 SELECT *

 FROM Production.Product

 WHERE ProductID = 1

Both queries will return instantly, even when your other
transaction is still running. However, both queries will return Name Adjustable Racers,
which isn’t yet committed. Now, rollback your UPDATE
query, and no one will ever be able to get Adjustable
Racers ever again.

A connection string usually has a timeout defined (the default
is 30 seconds). This means that when a query is started from C# and takes over
30 seconds to complete, or is blocked for at least 30 seconds, you’ll get a TimeoutException.

When one transaction is waiting for another transaction,
and then that other transaction requests a resource that is locked by the first
transaction, you’re having a deadlock. The concept of deadlocks should be
familiar to programmers, as multithreaded applications can run into the same
problems.

Let’s fake a deadlock. Open up a query window and execute
the following query.

Code Listing 94:
A locking query

 BEGIN TRAN

 UPDATE Production.Product

 SET Name = 'Adjustable Racer'

 WHERE ProductID = 1

Now open up another query window, make it wait for the
open transaction, and lock another resource.

Code Listing 95:
A locking and waiting query

 BEGIN TRAN

 UPDATE Production.Location

 SET Name = 'Tool Cribs'

 WHERE LocationID = 1

 SELECT *

 FROM Production.Product

 WHERE ProductID = 1

Go back to the first window, where the transaction is
still open, and request LocationID 1, which is locked.

Code Listing 96: Deadlock ensues

 SELECT *

 FROM Production.Location

 WHERE LocationID = 1

One of the two query windows should now return an error: Msg 1205, Level 13, State 51, Line
7

Transaction
(Process ID 54) was deadlocked on lock resources with another process and has
been chosen as the deadlock victim. Rerun the transaction.

The transaction of that query is automatically rolled
back. In the other window, you can manually execute ROLLBACK
TRAN.

You can track locks and deadlocks using the SQL Server
Profiler. Open up a new session, unselect all events, and select the Deadlock
graph event under Locks. If you repeat the previous steps, you will
get an event and a graph. It should look something like as follows.

Figure 31: A deadlock graph

The ovals are the queries involved in the deadlock, and
the rectangles are the objects that were locked and requested. Deadlock graphs
can get very complicated, having tens of ovals and rectangles.

We have already seen two methods of fixing locks that will
also fix deadlocks: using SNAPSHOT ISOLATION, and
lowering your ISOLATION LEVEL to READ UNCOMMITTED. Another method that will prevent
deadlocks is to always access database objects in the same order. Unfortunately,
that’s not always easy or even possible. Try keeping transactions short so the
chances of (dead) locking are minimized.

Dynamic management views

Knowing a little more on how to get a grip on queries, plans,
and other data may be very useful. SQL Server has what are called dynamic management
views, or DMVs. The structure of your database, tables, procedures, and
practically everything in your database is stored in these views. For example,
the following query lists all tables in your database (twice).

Code Listing 97: List all tables

 SELECT * FROM sys.tables

 SELECT * FROM INFORMATION_SCHEMA.TABLES

You can find the views in the Object Explorer under Views
and then System Views. You’ll find views called sys.something
and a few INFORMATION_SCHEMA.SOMETHING views.
The INFORMATION_SCHEMA views are ISO standards,
and using them in your queries should, in theory, make them work in Oracle,
MySQL, or any other SQL database that adheres to ISO standards. There are about
twenty INFORMATION_SCHEMA DMVs, and (I’m
guessing) well over a hundred sys DMVs, so you
just go with the sys views, as they have all you
need.

Next to the DMVs, there are system SPs and functions, as
well. You can find them under Programmability > Stored Procedures
> System Stored Procedures > Programmability> Functions
> System Functions. You can simply scroll through them and try them
out. You’ll probably find you’ve been using many functions already, such as CAST, MAX, and CURRENT_TIMESTAMP.

Let’s move on to the good stuff. We were talking about
query plans. There is a view called sys.dm_exec_cached_plans,
which has a list of all cached plans. The data in it is a little cryptic,
though. In its current form, it’s of no use to us.

Figure 32: sys.dm_exec_cached_plans

The plan_handle is very
useful, however. We will need this once we know which plan and query it
actually belongs to. We can get the actual plan with the function sys.dm_exec_query_plan, which takes a plan_handle as parameter. For some reason this also
returns the database ID, which is nice if we want to filter on database (which
we do, as it also has plans of the master database).

Now that we have the plan_handle
and the query_plan, we want the actual query.
This is another function, called sys.dm_exec_sql_text,
which also has a plan_handle as input parameter.
We now also have the text and, again, database
ID. We can get the database ID from a database name using DB_ID(database_name).

Code Listing 98: List query plans

 SELECT cp.plan_handle, qp.query_plan, st.[text]

 FROM sys.dm_exec_cached_plans
 cp

 CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) AS qp

 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st

 WHERE qp.[dbid] = DB_ID('AdventureWorks2014')

Now here is a most peculiar thing: open up a new query
window and run DBCC FREEPROCCACHE. Remove it
and, in the same window, run SELECT * FROM
Person.Person (or whatever you like). Empty the query window again and
run SET ARITHABORT OFF. Clear the query window
and run SELECT * FROM Person.Person again. Now
list the query plan, and you will see that SELECT *
FROM Person.Person is listed twice! But how could this be? Isn’t a query
plan reused?

SQL Server reuses query plans, but only if the query is
exactly the same, and certain settings are the same as well. ARITHABORT is a setting that will trigger SQL Server
to create a new plan if the setting value is different from a currently stored
plan. These settings can be retrieved using the function sys.dm_exec_plan_attributes. There are a lot of attributes,
and their values are stored together in a single value, so it’s completely
unreadable. Luckily for us, SQL Server MVP Erland Sommarskog has written a
rather lengthy (but very good and detailed) article about
this phenomenon. This part is especially relevant in his “Different Plans for
Different Settings” section. I’m going to use his trick to get all these
attributes on one line; you can read his blog to make sense of it all.

Code Listing 99: List plan attributes

 SELECT cp.plan_handle, qp.query_plan, st.[text], attrlist

 FROM sys.dm_exec_cached_plans
 cp

 CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) AS qp

 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st

 CROSS APPLY (SELECT epa.attribute
 + '=' + convert(nvarchar(127), epa.value) + ' '

 FROM sys.dm_exec_plan_attributes(cp.plan_handle) epa

 WHERE epa.is_cache_key
 = 1

 ORDER BY epa.attribute

 FOR XML PATH('')) AS a(attrlist)

 WHERE qp.[dbid] = DB_ID('AdventureWorks2014')

The takeaway here is that SQL Server creates a plan based
on certain settings. ARITHABORT is a very nasty
one, too. When you’re running a query from C# code, be it through ADO.NET or
Entity Framework, ARITHABORT is set to OFF by default. However, if you run a query in SQL
Server, ARITHABORT is ON
by default. So whenever your application is running slowly because of some
query, and you run the query in SSMS, it will probably be lightning-fast—it
will create a new plan because the ARITHABORT
setting is different. I have been stumbling around in the dark for years not
knowing about this!

Now that you know how to get the query plan for a single
query, it is also possible to delete this plan from the cache. We have used DBCC FREEPROCCACHE to delete all plans from the cache,
but you can use the plan_handle to delete just
that one plan. Just grab the handle and pass it to DBCC
FREEPROCCACHE.

Code Listing 100: DBCC FREEPROCCACHE (plan_handle)

 DBCC FREEPROCCACHE (0x060007003A0E5604409D1361040000000100)

Another DMV we can use is sys.dm_tran_locks.
It shows currently active requests to the lock manager. Additionally, sys.dm_os_waiting_tasks shows all sessions that are
currently waiting on a lock resource. So combining the two, we get the sessions
that are currently waiting to acquire a lock along with the lock information.

Code Listing 101: List blocked sessions

 SELECT *

 FROM sys.dm_tran_locks tl

 JOIN sys.dm_os_waiting_tasks
 AS owt ON tl.lock_owner_address =
 owt.resource_address

The most interesting columns right now are the request_session_id in dm_tran_locks
(which should correspond to the session_id in dm_os_waiting_tasks) and the blocking_session_id
in dm_os_waiting_tasks. We can use these columns
to get the associated sessions from sys.dm_exec_connections.

Code Listing 102: List blocked connections

 SELECT *

 FROM sys.dm_tran_locks tl

 JOIN sys.dm_os_waiting_tasks
 AS owt ON tl.lock_owner_address =
 owt.resource_address

 JOIN sys.dm_exec_connections
 ec_waiting ON ec_waiting.session_id = tl.request_session_id

 JOIN sys.dm_exec_connections
 ec_blocking ON ec_blocking.session_id = owt.blocking_session_id

The dm_exec_connections
view has a column most_recent_sql_handle. This
is the last query that was executed by the session, and must be the queries
that are currently blocking and waiting. We have already seen how to get the
query text and plan from a sql_handle, so we can
apply that here as well. Furthermore, a lock is requested on some partition, as
indicated by the resource_associated_entity_id
in dm_tran_locks. The partition belongs to an
object, so this is where we get the object ID, which we can then use to get the
object name. If we filter out some fields, we’re left with a resulting table
that’s actually pretty readable.

Code Listing 103: List blocked queries

 SELECT tl.request_session_id

 ,owt.blocking_session_id

 ,tl.resource_type

 ,waiting_text.[text]
 AS WaitingText

 ,blocking_text.[text]
 AS BlockingTest

 ,OBJECT_NAME(p.object_id) AS ObjectName

 FROM sys.dm_tran_locks tl

 JOIN sys.dm_os_waiting_tasks
 AS owt ON tl.lock_owner_address =
 owt.resource_address

 JOIN sys.dm_exec_connections
 ec_waiting ON ec_waiting.session_id = tl.request_session_id

 JOIN sys.dm_exec_connections
 ec_blocking ON ec_blocking.session_id = owt.blocking_session_id

 CROSS APPLY sys.dm_exec_sql_text(ec_waiting.most_recent_sql_handle)
 AS waiting_text

 CROSS APPLY sys.dm_exec_sql_text(ec_blocking.most_recent_sql_handle)
 AS blocking_text

 JOIN sys.partitions p ON p.hobt_id = tl.resource_associated_entity_id

Figure 33: Currently blocked query

If you decide that the blocker is less important than the
waiter, or that the blocker is breaking too much, you can easily kill the
blocker if you want to.

Code Listing 104:
List and kill a session

 EXEC sp_who -- Lists all sessions.

 EXEC sp_who2 -- Lists all sessions+.

 KILL 54 -- Kill a session.

DMVs are an invaluable tool when trying to troubleshoot
problems. Unfortunately, there are a whole lot of them, and most of them just
don’t make sense when you don’t know exactly what’s going on. One person who
does know what’s going on, and who has helped me and my coworkers a lot, is
Pinal Dave. I’ve never met him in person, but luckily he shares his knowledge
in his blogs. No doubt you’ve
already come across him—he’s the (self-proclaimed) SQL Authority. Hopefully,
next time you’re troubleshooting some query, you know what to do.

 	
 [image:]

 	
 Tip: We
have seen various methods of finding out what’s going on in your SQL Server
database. Another way of seeing what’s up is by using the Activity Monitor. It
shows processor time, waits, I/O, and recent expensive queries. It’s less
detailed than the methods laid out in this chapter, but gives a nice overall
picture of your database performance. To open it, simply right-click on your
instance in the Object Explorer and choose Activity
Monitory from the context menu, or click Activity
Monitor on the top menu.

Chapter 8 Continuous Integration

Up to now, we have seen how we can develop applications
using C# and SQL Server using ADO.NET and the Entity Framework. But developing
applications is only one aspect of the typical developer’s job. At the start of
the day we check out the newest code, at the end of the day we commit our own
changes, and we probably do that a few times in between as well. Source control
has been an invaluable tool in our day-to-day lives. Next to that, we have to
make sure that our changes don’t break any existing code, and if they do, we
want to know as soon as possible. Writing unit tests for our code—whether
upfront, using test-driven development, or after we’ve written the code—has
become a big part of our jobs. Last, but not least, we want to deploy our
application to any environment, and the fewer manual actions we have to take,
the better.

Yet, when we do all this, the database is usually just a
bunch of scripts that we have to save, test, and deploy manually. I have to
admit that’s how I do it, too. Unfortunately, databases aren’t just a bunch of
code files that can easily be compiled and copied for deployment. Even though I
have little experience with the topics in this chapter, that doesn’t mean I
can’t point you in the right direction.

Source control

When you’re using Entity Framework Code First or Database
Projects to develop your database, you already get some sort of database source
control. After all, it’s pretty easy to update a database or go back to a
specific version. However, when you’re not using either of those, you’re
probably stuck saving SQL scripts, and they probably go one way only, so going
back to a previous version isn’t really an option. None of those are examples
of true source control, though. Unfortunately, all SQL source control systems I
could find were paid ones, and I’m not discussing paid products in this book.
So although SSMS has an options page for source control, this is only to select
a third-party plugin, and the choices are limited.

It is possible to put your database into source control
systems such as SVN or Git. Probably the best one out there is SQL Source
Control by Redgate.
I have used Redgate products in the past, and they’re very good tools.
Unfortunately, they aren’t cheap.

Other tools I’ve found are GitSQL,
ApexSQL
(I’ve used their Diff tool), AgentSvn,
and Liquibase. All have free
trials or (very) limited free versions, so you can try them at your own risk
and leisure.

For now, it seems database projects are the easiest and,
most of all, cheapest method of maintaining some sort of source control for
your database. And that’s only your schema—getting (some) data into source
control seems, for now, impossible.

Testing

When it comes to testing our code, we usually mock our
data access layer. After all, our tests should run independent of the database.
We test if our logic is correct, if 1 + 1 really equals 2. But what we often
don’t test is whether the database really returns what we expect it to return.

Once again, Redgate has a rather pricey testing tool
for SQL Server unit testing. I’m not discussing it here, but if you really want
a good testing tool, that’s probably the way to go. For testing, however, we
don’t need a third-party tool. The Visual Studio Database Project includes
testing tools.

Start Visual Studio and create a new SQL Server Database
Project. I’ve called mine DbTest, but name it whatever you like. Now add
a table, and call it Person. Make the default Id field an auto-incrementing field by setting Identity Specification to True
in the options pane. Then add a non-nullable field, FirstName
varchar(256), and a nullable field, LastName
varchar(256). Next, add a stored procedure to the project, call it GetFullName, and change the contents of the created
file to the following.

Code Listing 105: GetPeople stored procedure

 CREATE PROCEDURE [dbo].[GetFullName]

 @PersonId INT

 AS

 SET NOCOUNT ON

 SELECT FirstName + '
 ' + LastName

 FROM Person

 WHERE Id =
 @PersonId

Now publish the database. If it fails, you may need to set
the Target Platform to SQL Server 2014 in the project properties. If everything
went well, you should now have a database with a single table and a single
stored procedure.

To create a unit test, right-click on the stored procedure,
and in the context menu, choose Create Unit Tests… You now get a window
where you can pick stored procedures to test, select a type and name for your
test project, and pick a name for your test class. Be sure to change the
default VB project to a C# project. Call the project whatever you like; I’ve
called it DbTest.Tests. I’ve called my unit test
GetFullNameTests. In the next part, you can pick
a connection, a secondary connection, and whether or not your changes should
automatically be deployed before a test run. Set the connection to your new DbTest
and select Automatically deploy… Pick your DbTest project as Database
project and debug as your Deployment configuration.

You now get a Test Project with a SQL Server unit test and
a regular unit test class. You can delete the regular unit test class. The SQL
Server unit test contains a SQL script that says “-- database
unit test for dbo.GetFullName” at the top. It should be shown by default
after you create the project. Underneath the script are the test conditions.
You will want to delete the default Inconclusive
condition, as it will always make your test fail. Now change the script to the
following.

Code Listing 106: SQL unit test

 EXEC GetFullName 1

Add a test condition of the type Scalar
Value. In the options of the condition, set Null
expected to False and Expected value to Sander Rossel
(or your own name). You can rename your test in the top right above your query;
I’ve renamed it FirstAndLastName.

Now, in SSMS, add some data to your database. If you
didn’t test for Sander Rossel in the condition,
make sure you change the value in the following script as well.

Code Listing 107: Insert test data

 INSERT INTO Person

 (FirstName,
 LastName)

 VALUES

 ('Sander', 'Rossel'),

 ('Satya',NULL)

Now you are ready to run your test. In Visual Studio, go
to the menu and select Test > Windows > Test Explorer.
In the Test Explorer, simply click Run All. Your test should now run and
pass, if you did everything correctly.

Now let’s add a failing test. Go to your GetFullNameTests again, and add a test by clicking the
green plus sign somewhere in the bar above the query. Name your test OnlyFirstName. Again, remove the Inconclusive
condition add a Scalar Value, and test for Satya.
Change your script to the following.

Code Listing 108:
Failing unit test

 EXEC GetFullName 2

Now run your tests again, and OnlyFirstName
should fail. It will tell you that value Satya
was expected, but the returned value was null. That’s right, because the
procedure simply concatenates FirstName and LastName, but LastName
is NULL, and by default, anything + NULL = NULL. We should
use the CONCAT function instead. So in Visual
Studio, go to the GetFullName file and change
the SELECT line with the following.

Code Listing 109: Fixed procedure

 SELECT CONCAT(FirstName, '
 ' + LastName)

Run your tests again, and this time they should both pass.
The change is automatically published because that’s what we specified when we
created the project. If someone changed this procedure back to what it was,
because it has less verbose syntax, and he doesn’t quite get CONCAT, our test will fail again. More likely, if
someone adds MiddleName, we’ll know pretty soon
if their change broke our cases where MiddleName
is NULL. Likewise, they can add unit tests for MiddleName.

Deployment

Deploying a database is often a manual task. DBAs want to
keep total control of their database. The IT department doesn’t trust automated
deployment, or is afraid it’s triggered at a wrong time. They’re not confident
that the development team has their scripts in order so that an automatic
database update goes exactly as planned, always. When the database goes awry,
it’s often a costly exercise to get everything running again. In short,
automated database updates make a lot of people very nervous. Manually running
scripts is the way to go. We have seen that (semi-) automatic deployment is
pretty easy using Entity Framework Code First or Database Projects. When using
a Database Project, you could even go for (manual) deployment using a Data-tier
application package.

Be that as it may, it is possible to just automate
database deployment. Perhaps you’d like this for noncritical environments, such
as a test environment. Again, Redgate has a
good, but expensive, solution. We’ve talked about Database Projects, so I’m
skipping that here. One last thing I’d like to discuss is the SQL Server command
line tool, or the sqlcmd. Chances are you need
to download it, especially when you’re using a separate server that handles
updates. You can download the Command Line Utilities for SQL Server in the Microsoft
Download Center. With this tool, you can execute scripts from the command
line, batch scripts, and your favorite CI tools. The sqlcmd
tool was introduced with SQL Server 2005, when it replaced the functionally
similar isql and osql
tools.

Once you have the sqlcmd
installed, open up a command window. Now, in the command window type the
following (hit enter for a new line).

Code Listing 110: SELECT using sqlcmd

 sqlcmd
 -S [servername\instancename] -E -d AdventureWorks2014

 SELECT *

 FROM Person.Person

 WHERE BusinessEntityID = 1

 GO

On the first line, we connect to our database. Each line
after that makes up your query, which is executed after a GO command. The -S
parameter is the name of your server, -E
indicates we’re logging in with a trusted connection, and -d specifies the database. To exit the sqlcmd, simply type exit.
Note that all parameters are case sensitive. If you’re not on a trusted
connection and you would like to log in using a username and password, you can
use the following command instead.

Code Listing 111: sqlcmd using SQL Server login

 sqlcmd
 -S [servername\instancename] -U username -P password -d AdventureWorks2014

When you run the sqlcmd
from the command prompt, you can stretch your query over multiple lines and
execute using GO. When you’re not in the command
prompt, you need to use -q (query) or -Q (query and exit) and a single line query.

Code Listing 112: sqlcmd using a direct query

 sqlcmd
 -S [server\instance] -E -d AdventureWorks2014 -Q "SELECT * FROM
 Person.Person WHERE BusinessEntityID = 1"

Of course, you can also specify a script file to run using
-i. Create a file somewhere (I put it in C:\Temp),
name it something (like SelectPerson1.sql), and then you can run the
following command.

Code Listing 113: sqlcmd using an input file

 sqlcmd
 -S [server\instance] -E -d AdventureWorks2014 -i C:\Temp\SelectPerson1.sql

Now the results are a little hard to read in the command
prompt. You can also output them to a file using -o.

Code Listing 114: sqlcmd using an output file

 sqlcmd
 -S [server\instance] -E -d AdventureWorks2014 -i C:\Temp\SelectPerson1.sql -o
 C:\Temp\result.txt

Another option you may like to use is -b, which terminates the job if an error occurs. You
can find all options in the sqlcmd documentation.

Using the sqlcmd, you can
automate certain SQL tasks by running them from the command line. I should
mention that this in no way replaces the SQL Agent, which also runs automated
SQL jobs. The thing is, you can’t run the SQL Agent from your CI tool, while you
can run the sqlcmd utility. The sqlcmd tool still does not automate your deployments,
but it may be useful in running scripts automatically before your tests start
off, or after you commit some new scripts to your source control system.

Conclusion

The tools laid out in this book do not make you the best
C# developer around, nor do they teach you how to be an awesome DBA. They give you the middle ground of both. I’ve seen many developers who lack even the
most basic database skills. SQL injection still happens way too often. Software
becomes slow after a year of production because the SQL queries are everything
but optimal. Companies have to invest in expensive server hardware because
developers put queries in loops, get surprised by the lazy-loading ability of
ORMs, or just write plain awful SQL queries. While this book has not helped you
much in the ways of writing your queries, it hopefully helped in giving you a
broader perspective on the database in general. Parameterize your queries, but
be wary of parameter sniffing. Know that your one query that takes five minutes
to run is possibly blocking the entire system. Identify such bottlenecks and
fix them, or prevent them from ever happening.

Detailed
Table of Contents

About the Author

Introduction

Tools

Chapter 1 SQL Server Management
Studio

Chapter 2 ADO.NET

Establishing a connection

The connection string

Creating a connection

Configuring your connection string

Building a connection string

Querying your database

Reading data

Parameterization

Create, update, delete

Stored procedures

Data sets

ADO.NET abstractions

Chapter 3 Entity Framework Database
First

Database First

IQueryable

Expression trees

CRUD

Chapter 4 Entity Framework Code
First

Migrations

Automatic migrations

Code First migrations

Seeds

Chapter 5 SQL Server Data Tools

Database Project

Publishing

Updating

Comparing

Chapter 6 Troubleshooting

Profiling

Query plans

Indexing

Parameter sniffing

Chapter 7 Interception, Locking,
Dynamic Management Views

Interception

Locking and deadlocks

Dynamic management views

Chapter 8 Continuous Integration

Source control

Testing

Deployment

Conclusion

images/00031.jpeg
]

Index Seek (NonClustered)
[Person] . [IX_Person MiddleName]
Cost: 100 %

images/00030.jpeg
%

Index Scan (NonClustered)
[Person] . (IX_Person_LastName_FirstN..

Cost: 100 &

images/00033.jpeg
SNSILELTS 50 SUE IWNER] 5 A,
SelesOrdartiender WHERE Orderdate < forserbace

O —— — -,

Guery 3 Query cost (relevive to the Batem)T 3V
SELICT - T304 Sales.SalesorderHesder WHERE OrdesDate < @ordesdate

52 _=2__ 3 _

e T e T oy o S T SR S

Teetative o vhe Baven T 9%
Selesordernender WNERE Orderbace ¢ §Ordervate

=] E] ki

T o seatae T e Seatar =

images/00032.jpeg
THEED 33 SNAEY RS- VMRS 06 S SARER) 4. SVEN
SELECT + FROK [Sales) . [SalesOrderhieader) WHERE (Orderace)=di
Wissing Index (Inpact 39.1861): CREATE NONCLUSTERED INOEX [<hame of Missing Index, syssese,>) OF

ak - :'-3 ol o :‘mzrm':ﬂgv‘wmw;

images/00035.jpeg

images/00034.jpeg
B Index Seek (NonClustered)
Scan a particular range of rows from a nonclustered

Index Seek (NonClustered) |
Ordexieader] - (1X, Salesor "9

Cosz: 50 %
Physical Operation Index Seek
8 Logical Operation Index Seek
Actual Execution Mode Row
Key Lookup (Clustered) Estimated Execution Mode Row
Ordezieader] . (PK. SalesOr: gy T
Sosez 0% Actual Number of Rows 31465
Actual Number of Batches of
imated O Cost 0,0032631(50%)
Estimated 1/0 Cost 0003125
Estimated CPU Cost 0,0001581 |
Estimated Subtree Cost 00032631
Number of Executions 1
Estimated Number of Executions 1
Estimated Number of Rows 1
Estimated Row Size 198
Actual Rebi 0
Koy Lookup (Clussered) Actual Rew o
<0 1. (3K Sa1e502 Ordered T
Cosz: 50 % ‘Node ID 3
Object

[AdventureWorks2014) {Sales].[SalesOrderHeader].
[1X_SalesOrderHeader_OrderDate]

Output List

[AdventureWorks2014] [Sales].
[SalesOrderHeader] SalesOrderlD:
[AdventureWorks2014] (Sales).
[SalesOrderHeader] OrderDate

Seek Predicates

Seek Keys{1]: End: [AdventureWorks2014].[Sales].
[SalesOrderHeader].OrderDate < Scalar Operator
([@OrderDate])

images/00037.jpeg

images/00036.jpeg
[FEREH

ey

EEEEEE;

cover.jpeg
SQL Server for
C# Developers

by Sander Rossel

images/00028.jpeg

images/00027.jpeg

images/00029.jpeg
=
=

il

Nested Loops
(Inner Join)

Cose:

5%

]

Index Scan (NonClustered)
(Pezson] . (IX_Person LastName Firsti_

Cose: 85 %

L y Lookup (Clustered)
thazsaat 94 Peroon BesinesstusivyL
Cost: 3 %

images/00020.jpeg
€4 Connect X
History Browse

4 Recent Connections

ProductionDb
€551446 (I s2nder.rossel)

SuccinctlyExamples
CS51446 (I sander.rossel)

| Show Connection Properties |

ox

images/00022.jpeg
Title varchar(64)

P

18 @

Column Properties

Collation <database default>

v Computed Column Specification (datediff(hour,[DateOfBirth] getdate()/(8766))
(Formula) (datediff(hour,[DateOfBirth], getdate())/(8766))
Is Persisted No

images/00021.jpeg
Script Fle: Person.sql” | -
| Nome DutaType | Alowuts [Dtaut| | 4 eys 1)

P Peson Primary Key, Chisteed 1d)
Check Constraints ()

W svsal |
REATE TABLE [dbo] . [Person] (
10 T

ToENTITY (1, 1) KT WL,
[Firsthase] VARGHAR (256) 10T WL,

[Lostane] VAROHWSR (256) e

[DateofBirtn] shaLLOATETINE 1
[oenderta] 1T ot
[ritle] vaRows (68) fii,

COUSTRAZNT [FX_person_Gender] FOREIGH KEY ([GenderTd]) REFERENCES. [dbo] . [Gender] ([1d]),
COUSTRAINT [PX_person] PRIARY KEY ([1d])

images/00024.jpeg
cssie
fttt——

et bch ke T, by 1, 04810

Er—

Sty s st ot s

Bk radanoe.

Exeomess.
e Attt

- T

Sy 5

images/00023.jpeg
1 tables and/or views were compared.

Object check toinclude n update) _ Different Records Onlyin Source
v i Tables

A8 [dbolGender] o 3(d03)

- Views

W Toble/View Combination

Different Records (0) Only in Source (3) Onlyin Target (0) _Identical Records (0)
3 records st onthe source but not on th target database 3 recordswil b sdded totarget (CSS146 ProductionDb ¢

Updete 14 Code Descrption
a nksiowN Notsaying
2 2 MALE Male

= FeMALE Female

images/00026.jpeg
£X File Edit View Replay Tools Win
208 &(H)s 2 ()]

— —

images/00025.jpeg
ooy
‘ T oo ot o .8 e sty

e

images/00017.jpeg
2 conrnich
TR0 e

Lot
ot g Cokgrt BRI EOOEASOBEEE OO0 A5
Gt

¥ ot

[ieszristes.] ot
s,

Gt

Cusre

AR i Saia

i
1300
120
s120m
120
s1a02
100
10
100
popgeny

images/00016.jpeg
Package source: nuget.org - & | Default project: Codefirst

Each package is licensed to you by its owner. NuGet is not responsible 1
licenses. Follow the package source (feed) URL to determine any depender
Package Manager Console Host Version 3.4.3.855

Type ‘get-help NuGet' to see all available NuGet commands.

PH>

Checking if the context targets an existing database...
codel First Migrations enabled for project CodeFirst.
P>

images/00019.jpeg
X

Sewchintaled To P~

R -
M A project for reating & SQU Server
e

images/00018.jpeg
] Solution 'Solution1' (1 project)
K Properties
=B References
4] dbo
4] Tables
T Gender.sql
T Person.sql

images/00011.gif

images/00010.jpeg
Column Name Data Type Allow Nulls

] int =]
FirstName. varchar(256) a
LastName. varchar(256) ~
DateOfBirth smalidatetime [}
LastLoginTime datetime]

[m]

. Do you wantto save this change script to 3 text file?

COMMIT ~
BEGIN TRANSACTION

60
ALTER TABLE dbo Person
'DROP CONSTRAINT FK_Person_Gender

G0
ALTER TABLE dbo.Gender SET (LOCK ESCALATION = TABLE)
G0

COMMIT
BEGIN TRANSACTION

60
‘CREATE TABLE dbo.Tmp_Person
(

< >

[Automatically generate change script on every save

(T |

images/00013.jpeg
2] Solution 'ConsoleApplication1’ (1 project)
4 [c#] ConsoleApplication
b M Properties
b =B References
¢ App.config
) packages.config
b c* Program.cs
4 g,i_f‘ SuccinctlyExamplesModel.edmx

uccinctlyExamplesModel.Context.cs
uccinctlyExamplesModel.Designer.cs

S
) SuccinctlyExamplesModel.edmx.diagram
4 ‘{h

) Gender.cs

b
>) Person.cs
) SuccinctlyExamplesModel.cs

images/00012.jpeg
= Properties
- & 1d
= Properties & FirstName

o ld # LastName
& Code 5 K DateOfBirth
K Description K Genderld
= Navigation Properties = Navigation Properties
= People = Gender

images/00015.jpeg
PeopleEnuar.where(p => p.Firsthame == “Sander”).Tolist();

@ (etens Pesors boob predicat)
e st vt s o s e

images/00014.jpeg
[——

images/00002.gif

images/00001.jpeg

images/00004.jpeg
43 CS51446.DbTest - dbo.Person” - Microsoft SQL Server Manage... — o b3
File Edit View Project Debug Table Designer Tools Window Help
(5 | A NewQuey (B 5 % D@9
3 el 32 -

Column Name Data Type

2| 1d int

| Firsthame varchar(256)
Lastame varchar(256)
DateOfgirth smaldatetime
Genderld int

Column Properties

EYARs|
> Full-text Specification
QL Server St
v v
(s Identity) Ves
Identity Increment 1
Identity Seed 1
Indexable Yes

Identity Specification

images/00003.jpeg
DebugTooks Window Help
o |) NewQuery [iy

Comect~ 3/ 3i 8 75
& (3 Databases
3 Securty
3 ServerObjects

@ (3 Replicaion
& (3 Management

Resdy

images/00006.jpeg
Column Name Data Type Allow Nulls

Code wvarchar(16)
Description varchar(64)

ooo

images/00005.gif

images/00008.jpeg
Id Code Description
0 UNKNOWN Not saying
1 MALE Male
2 FEMALE Female
m NULL NULL

images/00007.jpeg
Edtn propetes o g . |

oty 0t Gn o Y
g

| o]

images/00009.jpeg
| DateOfBirth Genderld
I Sonder Rone T

2 Bill Gates 1955-10-28 1

o N N N N

