# Halpe-FullBody **Repository Path**: james9/Halpe-FullBody ## Basic Information - **Project Name**: Halpe-FullBody - **Description**: Halpe: full body human pose estimation and human-object interaction detection dataset - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-10-27 - **Last Updated**: 2021-10-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Halpe Full-Body Human Keypoints and HOI-Det dataset ## What is Halpe? **Halpe** is a joint project under [AlphaPose](https://github.com/MVIG-SJTU/AlphaPose) and [HAKE](http://hake-mvig.cn/). It aims at pushing Human Understanding to the extreme. We provide detailed annotation of human keypoints, together with the human-object interaction trplets from HICO-DET. For each person, we annotate 136 keypoints in total, including head,face,body,hand and foot. Below we provide some samples of Halpe dataset. Halpe 是 AlphaPose 和 HAKE 旗下的一个联合项目。 它旨在将人类理解推向极致。 我们提供了人类关键点的详细注释,以及来自 HICO-DET 的人-物交互 trplets。 对于每个人,我们总共注释了 136 个关键点,包括头、脸、身体、手和脚。 下面我们提供一些 Halpe 数据集的样本。
## Download Train annotations [[Baidu](https://pan.baidu.com/s/1hWX-I-HpXXnLcprFskfriQ) | [Google](https://drive.google.com/file/d/13vj8H0GZ9yugLPhVVWV9fcH-3RyW5Wk5/view?usp=sharing) ] Val annotations [[Baidu](https://pan.baidu.com/s/1yDvBkXTSwk20EjiYzimpPw) | [Google](https://drive.google.com/file/d/1FdyCgro2t9_nOhTlMPjEf3c0aLOz9wi6/view?usp=sharing) ] Train images from [HICO-DET](https://drive.google.com/open?id=1QZcJmGVlF9f4h-XLWe9Gkmnmj2z1gSnk) Val images from [COCO](http://images.cocodataset.org/zips/val2017.zip) ## Realtime Demo with tracking(带跟踪的实时演示 ) Trained model is available in [AlphaPose](https://github.com/MVIG-SJTU/AlphaPose)! 训练模型在 [AlphaPose] 中可用 Check out its [MODEL_ZOO](https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md) 看看它的[MODEL_ZOO]
## Keypoints format(关键点格式 ) We annotate 136 keypoints in total(我们总共注释了 136 个关键点: ): ``` //26 body keypoints {0, "Nose"}, {1, "LEye"}, {2, "REye"}, {3, "LEar"}, {4, "REar"}, {5, "LShoulder"}, {6, "RShoulder"}, {7, "LElbow"}, {8, "RElbow"}, {9, "LWrist"}, {10, "RWrist"}, {11, "LHip"}, {12, "RHip"}, {13, "LKnee"}, {14, "Rknee"}, {15, "LAnkle"}, {16, "RAnkle"}, {17, "Head"}, {18, "Neck"}, {19, "Hip"}, {20, "LBigToe"}, {21, "RBigToe"}, {22, "LSmallToe"}, {23, "RSmallToe"}, {24, "LHeel"}, {25, "RHeel"}, //face {26-93, 68 Face Keypoints} //left hand {94-114, 21 Left Hand Keypoints} //right hand {115-135, 21 Right Hand Keypoints} ## 中文 {0, "鼻子"}, {1, "L 眼"}, {2, "右眼"}, {3, "L 耳朵"}, {4, "右耳"}, {5, "L 肩"}, {6, "R 肩"}, {7, "L 肘"}, {8, "R 弯头"}, {9, "L 手腕"}, {10, "右手腕"}, {11, "L 臀"}, {12, "右臀"}, {13, "LKnee"}, {14, "右膝"}, {15, "L 脚踝"}, {16, "右脚踝"}, {17, "头"}, {18, "脖子"}, {19, "臀部"}, {20, "大脚趾"}, {21, "R 大脚趾"}, {22, "L 小脚趾"}, {23, "R 小脚趾"}, {24, "L 跟"}, {25, "R 跟"}, //脸 {26-93, 68 人脸关键点} //左手 {94-114, 21 左手关键点} //右手 {115-135, 21 右手关键点} ``` Illustration(插图):

26 body keypoints

68 face keypoints

21 hand keypoints
## Usage(用法 ) The annotation is in the same format as COCO dataset. For usage, a good start is to check out the `vis.py`. We also provide related APIs. See [halpecocotools](https://github.com/HaoyiZhu/HalpeCOCOAPI), which can be installed by `pip install halpecocotools`. 注释与 COCO 数据集的格式相同。 对于使用,一个好的开始是查看`vis.py`。 我们还提供相关的 API。 参见[halpecocotools](https://github.com/HaoyiZhu/HalpeCOCOAPI),可以通过`pip install halpecocotools`安装。 ## Evaluation(评估) We adopt the same evaluation metrics as COCO dataset. 我们采用与 COCO 数据集相同的评估指标。 ## Related resources( 相关资源 ) A concurrent work [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody) also annotate the full body keypoints. And HOI-DET for COCO dataset is also available at [V-COCO](https://github.com/s-gupta/v-coco) 一项并发工作 [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody) 也对全身关键点进行了注释。 COCO 数据集的 HOI-DET 也可在 [V-COCO](https://github.com/s-gupta/v-coco) 获得 ## Citation(引文 ) The paper introducing this project is coming soon. If the data helps your research, please cite the following papers at present: 介绍该项目的论文即将发布。 如果数据对您的研究有帮助,请参考目前以下论文: ``` @inproceedings{fang2017rmpe, title={{RMPE}: Regional Multi-person Pose Estimation}, author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu}, booktitle={ICCV}, year={2017} } @inproceedings{li2020pastanet, title={PaStaNet: Toward Human Activity Knowledge Engine}, author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu}, booktitle={CVPR}, year={2020} } ```