# HandGesturePy **Repository Path**: jason921121/HandGesturePy ## Basic Information - **Project Name**: HandGesturePy - **Description**: Static Hand Gesture detection using opencv python with hog features and SVM . - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-17 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HandGesturePy Human Computer Interaction using hand gesutures using Opencv - Python . Hand Gesture recognition is performed using HoG features and SVM as classifier. This project is inspired from http://research.microsoft.com/pubs/220845/depth4free_SIGGRAPH.pdf ## Hardware Setup ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/ScrenShots/hardware_setup.png) ## Difference after removing IR illuminator and using IR illuminators ![](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/ScrenShots/cam_different.png) ## Final Setup ![](https://github.com/arijitx/HandGesturePy/tree/master/ScrenShots/final_setup.jpg) ## Project Modules ![](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/ScrenShots/project_modules.png) ## TrainData ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/1_1.jpg) ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/2_1.jpg) ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/3_1.jpg) ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/4_1.jpg) ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/5_1.jpg) ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/6_1.jpg) ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/7_1.jpg) ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/8_1.jpg) ![alt tag](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/TrainData2/9_1.jpg) ## Training Data Accuracy
Number of Class : 9
Number of Item per Class : 20
Folder Name : TrainData2
Number of Cross validation Folds : 20

========================================================
+													   +
+				    MODEL EVALUATION				   +
+													   +
========================================================


----------------------- accuracy -----------------------
Mean    :    0.938888888889
Max     :    1.0
Min     :    0.666666666667
----------------------- f1_macro -----------------------
Mean    :    0.921296296296
Max     :    1.0
Min     :    0.611111111111
----------------------- f1_micro -----------------------
Mean    :    0.938888888889
Max     :    1.0
Min     :    0.666666666667
----------------------- precision_macro ----------------
Mean    :    0.912962962963
Max     :    1.0
Min     :    0.592592592593
----------------------- precision_micro ----------------
Mean    :    0.938888888889
Max     :    1.0
Min     :    0.666666666667
----------------------- precision_weighted -------------
Mean    :    0.912962962963
Max     :    1.0
Min     :    0.592592592593
----------------------- recall_macro -------------------
Mean    :    0.938888888889
Max     :    1.0
Min     :    0.666666666667
----------------------- recall_micro -------------------
Mean    :    0.938888888889
Max     :    1.0
Min     :    0.666666666667
----------------------- recall_weighted ----------------
Mean    :    0.938888888889
Max     :    1.0
Min     :    0.666666666667
## FLOWChart ![](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/ScrenShots/FLOWCHART.png) ## Steps ![](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/ScrenShots/STEP1.png) ![](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/ScrenShots/STEP2.png) ![](https://raw.githubusercontent.com/arijitx/HandGesturePy/master/ScrenShots/STEP3.png) ## Applications [![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/0f0RNrLPD8c/0.jpg)](https://www.youtube.com/watch?v=0f0RNrLPD8c)