# SRCNN-Tensorflow
**Repository Path**: jasonchiu/SRCNN-Tensorflow
## Basic Information
- **Project Name**: SRCNN-Tensorflow
- **Description**: Image Super-Resolution Using Deep Convolutional Networks in Tensorflow https://arxiv.org/abs/1501.00092v3
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-04-14
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# SRCNN-Tensorflow
Tensorflow implementation of Convolutional Neural Networks for super-resolution. The original Matlab and Caffe from official website can be found [here](http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html).
## Prerequisites
* Tensorflow
* Scipy version > 0.18 ('mode' option from scipy.misc.imread function)
* h5py
* matplotlib
This code requires Tensorflow. Also scipy is used instead of Matlab or OpenCV. Especially, installing OpenCV at Linux is sort of complicated. So, with reproducing this paper, I used scipy instead. For more imformation about scipy, click [here](https://www.scipy.org/).
## Usage
For training, `python main.py`
For testing, `python main.py --is_train False --stride 21`
## Result
After training 15,000 epochs, I got similar super-resolved image to reference paper. Training time takes 12 hours 16 minutes and 1.41 seconds. My desktop performance is Intel I7-6700 CPU, GTX970, and 16GB RAM. Result images are shown below.
Original butterfly image:

Bicubic interpolated image:

Super-resolved image:

## References
* [liliumao/Tensorflow-srcnn](https://github.com/liliumao/Tensorflow-srcnn)
* - I referred to this repository which is same implementation using Matlab code and Caffe model.
* [carpedm20/DCGAN-tensorflow](https://github.com/carpedm20/DCGAN-tensorflow)
* - I have followed and learned training process and structure of this repository.