# SRCNN-Tensorflow **Repository Path**: jasonchiu/SRCNN-Tensorflow ## Basic Information - **Project Name**: SRCNN-Tensorflow - **Description**: Image Super-Resolution Using Deep Convolutional Networks in Tensorflow https://arxiv.org/abs/1501.00092v3 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SRCNN-Tensorflow Tensorflow implementation of Convolutional Neural Networks for super-resolution. The original Matlab and Caffe from official website can be found [here](http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html). ## Prerequisites * Tensorflow * Scipy version > 0.18 ('mode' option from scipy.misc.imread function) * h5py * matplotlib This code requires Tensorflow. Also scipy is used instead of Matlab or OpenCV. Especially, installing OpenCV at Linux is sort of complicated. So, with reproducing this paper, I used scipy instead. For more imformation about scipy, click [here](https://www.scipy.org/). ## Usage For training, `python main.py`
For testing, `python main.py --is_train False --stride 21` ## Result After training 15,000 epochs, I got similar super-resolved image to reference paper. Training time takes 12 hours 16 minutes and 1.41 seconds. My desktop performance is Intel I7-6700 CPU, GTX970, and 16GB RAM. Result images are shown below.

Original butterfly image: ![orig](https://github.com/tegg89/SRCNN-Tensorflow/blob/master/result/orig.png)
Bicubic interpolated image: ![bicubic](https://github.com/tegg89/SRCNN-Tensorflow/blob/master/result/bicubic.png)
Super-resolved image: ![srcnn](https://github.com/tegg89/SRCNN-Tensorflow/blob/master/result/srcnn.png) ## References * [liliumao/Tensorflow-srcnn](https://github.com/liliumao/Tensorflow-srcnn) * - I referred to this repository which is same implementation using Matlab code and Caffe model.
* [carpedm20/DCGAN-tensorflow](https://github.com/carpedm20/DCGAN-tensorflow) * - I have followed and learned training process and structure of this repository.