# EraseNet **Repository Path**: jasonlaucn/EraseNet ## Basic Information - **Project Name**: EraseNet - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-10-30 - **Last Updated**: 2024-10-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # EraseNet This repository is the implementation of EraseNet, a neural network for end-to-end scene text removal. ## Data preparation The data preparation can be refer to ./examples/. You can download our datatset at [SCUT-EnsText](https://github.com/HCIILAB/SCUT-EnsText) or synthetic dataset [SCUT-Syn](https://github.com/HCIILAB/Scene-Text-Removal) for training and testing. ## Environment Anaconda is recommended to establish a virtual environment to run our code. My environment can be refered as follows: ``` python = 3.7 pytorch = 1.3.1 torchvision = 0.4.2 ``` ## Training Once the data is well prepared, you can begin training: ``` python train_STE.py --batchSize 4 \ --dataRoot 'your path' \ --modelsSavePath 'your path' \ --logPath 'your path' \ ``` ## Testing and evaluation If you want to predict the results, run: ``` python test_image_STE.py --dataRoot 'your path' \ --batchSize 1 \ --pretrain 'your path' \ --savePath 'your path' ``` To evaluate the results: ``` python evaluatuion.py --target_path 'results_path' --gt_path 'labels_path' ``` ## Acknowledge The repository is benefit a lot from [LBAM](https://github.com/Vious/LBAM_Pytorch) and [GatedConv](https://github.com/avalonstrel/GatedConvolution_pytorch). Thanks a lot for their excellent work. ## Citation If you find our method or dataset useful for your reserach, please cite: ``` @ARTICLE{Erase2020Liu, author ={Liu, Chongyu and Liu, Yuliang and Jin, lianwen and Zhang, Shuaitao and Luo, Canjie and Wang, Yongpan}, journal ={IEEE Transactions on Image Processing}, title ={EraseNet: End-to-End Text Removal in the Wild}, year ={2020}, volume ={29}, pages ={8760-8775},} @article{zhang2019EnsNet, title = {EnsNet: Ensconce Text in the Wild}, author = {Shuaitao Zhang∗, Yuliang Liu∗, Lianwen Jin†, Yaoxiong Huang, Songxuan Lai joural = {AAAI} year = {2019} } ``` ## Feedback Suggestions and opinions of our work (both positive and negative) are greatly welcome. Please contact the authors by sending email to Chongyu Liu([liuchongyu1996@gmail.com](mailto:liuchongyu1996@gmail.com)). For commercial usage, please contact Prof. Lianwen Jin via ([eelwjin@scut.edu.cn](mailto:eelwjin@scut.edu.cn)).