# yolov5
**Repository Path**: jaycezhao/yolov5
## Basic Information
- **Project Name**: yolov5
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: GPL-3.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-07-22
- **Last Updated**: 2021-07-22
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
  
  
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics
 open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
 
## Documentation
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## Quick Start Examples
Install
[**Python>=3.6.0**](https://www.python.org/) is required with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
 
Inference
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, PIL, OpenCV, numpy, multiple
# Inference
results = model(img)
# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
```
 
Inference with detect.py
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube video
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
```
 
Training
Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16
```
   
Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️ RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)  🌟 NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518)  🌟 NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)  ⭐ NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)  ⭐ NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
 
## Environments and Integrations
Get started in seconds with our verified environments and integrations, including [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) for automatic YOLOv5 experiment logging. Click each icon below for details.
  
## Compete and Win
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!  
  
  
## Why YOLOv5

  YOLOv5-P5 640 Figure (click to expand)
  

 
  Figure Notes (click to expand)
  
  * GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. 
  * EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
  * **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
 
### Pretrained Checkpoints
[assets]: https://github.com/ultralytics/yolov5/releases
|Model |size
(pixels) |mAPval
0.5:0.95 |mAPtest
0.5:0.95 |mAPval
0.5 |Speed
V100 (ms) | |params
(M) |FLOPs
640 (B)
|---                    |---  |---      |---      |---      |---     |---|---   |---
|[YOLOv5s][assets]      |640  |36.7     |36.7     |55.4     |**2.0** |   |7.3   |17.0
|[YOLOv5m][assets]      |640  |44.5     |44.5     |63.1     |2.7     |   |21.4  |51.3
|[YOLOv5l][assets]      |640  |48.2     |48.2     |66.9     |3.8     |   |47.0  |115.4
|[YOLOv5x][assets]      |640  |**50.4** |**50.4** |**68.8** |6.1     |   |87.7  |218.8
|                       |     |         |         |         |        |   |      |
|[YOLOv5s6][assets]     |1280 |43.3     |43.3     |61.9     |**4.3** |   |12.7  |17.4
|[YOLOv5m6][assets]     |1280 |50.5     |50.5     |68.7     |8.4     |   |35.9  |52.4
|[YOLOv5l6][assets]     |1280 |53.4     |53.4     |71.1     |12.3    |   |77.2  |117.7
|[YOLOv5x6][assets]     |1280 |**54.4** |**54.4** |**72.0** |22.4    |   |141.8 |222.9
|                       |     |         |         |         |        |   |      |
|[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8    |   |-     |-
  Table Notes (click to expand)
  
  * APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.  
  * AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`  
  * SpeedGPU averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`  
  * All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). 
  * Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
 
## Contribute
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started. 
## Contact
For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or professional support requests please visit 
[https://ultralytics.com/contact](https://ultralytics.com/contact).