# DeepNLP-models-Pytorch
**Repository Path**: jcai66/DeepNLP-models-Pytorch
## Basic Information
- **Project Name**: DeepNLP-models-Pytorch
- **Description**: Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ)
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-03-31
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# DeepNLP-models-Pytorch
Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ: NLP with Deep Learning)
- This is not for Pytorch beginners. If it is your first time to use Pytorch, I recommend these [awesome tutorials](#references).
- If you're interested in DeepNLP, I strongly recommend you to work with this awesome lecture.
* cs-224n-slides
* cs-224n-videos
This material is not perfect but will help your study and research:) Please feel free to pull requests!!
## Contents
| Model | Links |
| ------------- |:-------------:|
| 01. Skip-gram-Naive-Softmax | [notebook / data / paper] |
| 02. Skip-gram-Negative-Sampling | [notebook / data / paper] |
| 03. GloVe | [notebook / data / paper] |
| 04. Window-Classifier-for-NER | [notebook / data / paper] |
| 05. Neural-Dependancy-Parser | [notebook / data / paper] |
| 06. RNN-Language-Model | [notebook / data / paper] |
| 07. Neural-Machine-Translation-with-Attention | [notebook / data / paper] |
| 08. CNN-for-Text-Classification | [notebook / data / paper] |
| 09. Recursive-NN-for-Sentiment-Classification | [notebook / data / paper] |
| 10. Dynamic-Memory-Network-for-Question-Answering | [notebook / data / paper] |
## Requirements
- Python 3.5
- Pytorch 0.2+
- nltk 3.2.2
- gensim 2.2.0
- sklearn_crfsuite
## Getting started
`git clone https://github.com/DSKSD/cs-224n-Pytorch.git`
### prepare dataset
````
cd script
chmod u+x prepare_dataset.sh
./prepare_dataset.sh
````
### docker env
ubuntu 16.04 python 3.5.2 with various of ML/DL packages including tensorflow, sklearn, pytorch
`docker pull dsksd/deepstudy:0.2`
````
pip3 install docker-compose
cd script
docker-compose up -d
````
### cloud setting
`not yet`
## References
* practical-pytorch
* DeepLearningForNLPInPytorch
* pytorch-tutorial
* pytorch-examples
## Author
Sungdong Kim / @DSKSD