# DeepNLP-models-Pytorch **Repository Path**: jcai66/DeepNLP-models-Pytorch ## Basic Information - **Project Name**: DeepNLP-models-Pytorch - **Description**: Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ) - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-03-31 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DeepNLP-models-Pytorch Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ: NLP with Deep Learning) - This is not for Pytorch beginners. If it is your first time to use Pytorch, I recommend these [awesome tutorials](#references). - If you're interested in DeepNLP, I strongly recommend you to work with this awesome lecture. * cs-224n-slides * cs-224n-videos This material is not perfect but will help your study and research:) Please feel free to pull requests!!
## Contents | Model | Links | | ------------- |:-------------:| | 01. Skip-gram-Naive-Softmax | [notebook / data / paper] | | 02. Skip-gram-Negative-Sampling | [notebook / data / paper] | | 03. GloVe | [notebook / data / paper] | | 04. Window-Classifier-for-NER | [notebook / data / paper] | | 05. Neural-Dependancy-Parser | [notebook / data / paper] | | 06. RNN-Language-Model | [notebook / data / paper] | | 07. Neural-Machine-Translation-with-Attention | [notebook / data / paper] | | 08. CNN-for-Text-Classification | [notebook / data / paper] | | 09. Recursive-NN-for-Sentiment-Classification | [notebook / data / paper] | | 10. Dynamic-Memory-Network-for-Question-Answering | [notebook / data / paper] | ## Requirements - Python 3.5 - Pytorch 0.2+ - nltk 3.2.2 - gensim 2.2.0 - sklearn_crfsuite ## Getting started `git clone https://github.com/DSKSD/cs-224n-Pytorch.git` ### prepare dataset ```` cd script chmod u+x prepare_dataset.sh ./prepare_dataset.sh ```` ### docker env ubuntu 16.04 python 3.5.2 with various of ML/DL packages including tensorflow, sklearn, pytorch `docker pull dsksd/deepstudy:0.2` ```` pip3 install docker-compose cd script docker-compose up -d ```` ### cloud setting `not yet` ## References * practical-pytorch * DeepLearningForNLPInPytorch * pytorch-tutorial * pytorch-examples ## Author Sungdong Kim / @DSKSD