# Flappy-bird-deep-Q-learning-pytorch **Repository Path**: jeave/Flappy-bird-deep-Q-learning-pytorch ## Basic Information - **Project Name**: Flappy-bird-deep-Q-learning-pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-24 - **Last Updated**: 2021-11-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # [PYTORCH] Deep Q-learning for playing Flappy Bird ## Introduction Here is my python source code for training an agent to play flappy bird. It could be seen as a very basic example of Reinforcement Learning's application.


Camera app demo

## How to use my code With my code, you can: * **Train your model from scratch** by running **python train.py** * **Test your trained model** by running **python test.py** ## Trained models You could find my trained model at **trained_models/flappy_bird** ## Requirements * **python 3.6** * **pygame** * **cv2** * **pytorch** * **numpy**