# flink-connector-redis **Repository Path**: jeff-zou/flink-connector-redis ## Basic Information - **Project Name**: flink-connector-redis - **Description**: redis connector for flink - **Primary Language**: Java - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 10 - **Forks**: 6 - **Created**: 2022-03-15 - **Last Updated**: 2024-09-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [EN](README-en.md) # 1 项目介绍 基于[bahir-flink](https://github.com/apache/bahir-flink.git)二次开发,相对bahir调整的内容有: ``` 1.使用Lettuce替换Jedis,同步读写改为异步读写,大幅度提升了性能 2.增加了Table/SQL API,增加select/维表join查询支持 3.增加关联查询缓存(支持增量与全量) 4.增加支持整行保存功能,用于多字段的维表关联查询 5.增加限流功能,用于Flink SQL在线调试功能 6.增加支持Flink高版本(包括1.12,1.13,1.14+) 7.统一过期策略等 8.支持flink cdc删除及其它RowKind.DELETE 9.支持select查询 ``` 因bahir使用的flink接口版本较老,所以改动较大,开发过程中参考了腾讯云与阿里云两家产商的流计算产品,取两家之长,并增加了更丰富的功能。 注:redis不支持两段提交无法实现刚好一次语义。 # 2 使用方法: ## 2.1 工程直接引用 项目依赖Lettuce(6.2.1)及netty-transport-native-epoll(4.1.82.Final),如flink环境有这两个包,则使用flink-connector-redis-1.4.2.jar, 否则使用flink-connector-redis-1.4.2-jar-with-dependencies.jar。
``` io.github.jeff-zou flink-connector-redis 1.4.2 ``` ## 2.2 自行打包 打包命令: mvn package,将生成的包放入flink lib中即可,无需其它设置。 ## 2.3 使用示例 ``` -- 创建redis表示例 create table redis_table (name varchar, age int) with ('connector'='redis', 'host'='10.11.69.176', 'port'='6379','password'='test123', 'redis-mode'='single','command'='set'); -- 写入 insert into redis_table select * from (values('test', 1)); -- 查询 insert into redis_table select name,age + 1 from redis_table /*+ options('scan.key'='test') */ create table gen_table (age int , level int, proctime as procTime()) with ('connector'='datagen','fields.age.kind' = 'sequence', 'fields.age.start' = '2','fields.age.end' = '2','fields.level.kind' = 'sequence','fields.level.start' = '10','fields.level.end' = '10'); -- 关联查询 insert into redis_table select 'test', j.age + 10 from gen_table s left join redis_table for system_time as of proctime as j on j.name = 'test' ``` # 3 参数说明: ## 3.1 主要参数: | 字段 | 默认值 | 类型 | 说明 | |-----------------------|--------|---------|--------------------------------------------------------------------------------------------------| | connector | (none) | String | `redis` | | host | (none) | String | Redis IP | | port | 6379 | Integer | Redis 端口 | | password | null | String | 如果没有设置,则为 null | | database | 0 | Integer | 默认使用 db0 | | timeout | 2000 | Integer | 连接超时时间,单位 ms,默认 1s | | cluster-nodes | (none) | String | 集群ip与端口,当redis-mode为cluster时不为空,如:10.11.80.147:7000,10.11.80.147:7001,10.11.80.147:8000 | | command | (none) | String | 对应上文中的redis命令 | | redis-mode | (none) | Integer | mode类型: single cluster sentinel | | lookup.cache.max-rows | -1 | Integer | 查询缓存大小,减少对redis重复key的查询 | | lookup.cache.ttl | -1 | Integer | 查询缓存过期时间,单位为秒, 开启查询缓存条件是max-rows与ttl都不能为-1 | | lookup.cache.load-all | false | Boolean | 开启全量缓存,当命令为hget时,将从redis map查询出所有元素并保存到cache中,用于解决缓存穿透问题 | | max.retries | 1 | Integer | 写入/查询失败重试次数 | | value.data.structure | column | String | column: value值来自某一字段 (如, set: key值取自DDL定义的第一个字段, value值取自第二个字段)
row: 将整行内容保存至value并以'\01'分割 | | set.if.absent | false | Boolean | 在key不存在时才写入,只对set hset有效 | | io.pool.size | (none) | Integer | Lettuce内netty的io线程池大小,默认情况下该值为当前JVM可用线程数,并且大于2 | | event.pool.size | (none) | Integer | Lettuce内netty的event线程池大小 ,默认情况下该值为当前JVM可用线程数,并且大于2 | | scan.key | (none) | String | 查询时redis key | | scan.addition.key | (none) | String | 查询时限定redis key,如map结构时的hashfield | | scan.range.start | (none) | Integer | 查询list结构时指定lrange start | | scan.range.stop | (none) | Integer | 查询list结构时指定lrange start | | scan.count | (none) | Integer | 查询set结构时指定srandmember count | | zset.zremrangeby | (none) | String | 执行zadd之后,是否执行zremrangeby,取值:SCORE、LEX、RANK | ### 3.1.1 command值与redis命令对应关系: | command值 | 写入 | 查询 | 维表关联 | 删除(Flink CDC等产生的RowKind.delete) | |-----------------------|-----------------------|----------------|---------|----------------------------------| | set | set | get | get | del | | hset | hset | hget | hget | hdel | | get | set | get | get | del | | hset | hset | hget | hget | hdel | | rpush | rpush | lrange | | | | lpush | lpush | lrange | | | | incrBy incrByFloat | incrBy incrByFloat | get | get | 写入相对值,如:incrby 2 -> incryby -2 | | hincrBy hincryByFloat | hincrBy hincryByFloat | hget | hget | 写入相对值,如:hincrby 2 -> hincryby -2 | | zincrby | zincrby | zscore | zscore | 写入相对值,如:zincrby 2 -> zincryby -2 | | sadd | sadd | srandmember 10 | | srem | | zadd | zadd | zscore | zscore | zrem | | pfadd(hyperloglog) | pfadd(hyperloglog) | | | | | publish | publish | | | | | zrem | zrem | zscore | zscore | | | srem | srem | srandmember 10 | | | | del | del | get | get | | | hdel | hdel | hget | hget | | | decrBy | decrBy | get | get | | 注:**为空表示不支持** ### 3.1.2 value.data.structure = column(默认) 无需通过primary key来映射redis中的Key,直接由ddl中的字段顺序来决定Key,如: ``` create table sink_redis(username VARCHAR, passport VARCHAR) with ('command'='set') 其中username为key, passport为value. create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR) with ('command'='hset') 其中name为map结构的key, subject为field, score为value. ``` ### 3.1.3 value.data.structure = row 整行内容保存至value并以'\01'分割 ``` create table sink_redis(username VARCHAR, passport VARCHAR) with ('command'='set') 其中username为key, username\01passport为value. create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR) with ('command'='hset') 其中name为map结构的key, subject为field, name\01subject\01score为value. ``` ## 3.2 sink时ttl相关参数 | Field | Default | Type | Description | |--------------------|---------|---------|-------------------------------------------------------------------| | ttl | (none) | Integer | key过期时间(秒),每次sink时会设置ttl | | ttl.on.time | (none) | String | key的过期时间点,格式为LocalTime.toString(), eg: 10:00 12:12:01,当ttl未配置时才生效 | | ttl.key.not.absent | false | boolean | 与ttl一起使用,当key不存在时才设置ttl | ## 3.3 在线调试SQL时,用于限制sink资源使用的参数: | Field | Default | Type | Description | |-----------------------|---------|---------|-----------------------------------------| | sink.limit | false | Boolean | 是否打开限制 | | sink.limit.max-num | 10000 | Integer | taskmanager内每个slot可以写的最大数据量 | | sink.limit.interval | 100 | String | taskmanager内每个slot写入数据间隔 milliseconds | | sink.limit.max-online | 30 * 60 * 1000L | Long | taskmanager内每个slot最大在线时间, milliseconds | ## 3.4 集群类型为sentinel时额外连接参数: | 字段 | 默认值 | 类型 | 说明 | |--------------------| ------ | ------ |---------------------------------------------------------| | master.name | (none) | String | 主名 | | sentinels.info | (none) | String | 如:10.11.80.147:7000,10.11.80.147:7001,10.11.80.147:8000 | | sentinels.password | (none) | String | sentinel进程密码 | # 4 数据类型转换 | flink type | redis row converter | | ------------ | ------------------------------------------------------------ | | CHAR | String | | VARCHAR | String | | String | String | | BOOLEAN | String String.valueOf(boolean val)
boolean Boolean.valueOf(String str) | | BINARY | String Base64.getEncoder().encodeToString
byte[] Base64.getDecoder().decode(String str) | | VARBINARY | String Base64.getEncoder().encodeToString
byte[] Base64.getDecoder().decode(String str) | | DECIMAL | String BigDecimal.toString
DecimalData DecimalData.fromBigDecimal(new BigDecimal(String str),int precision, int scale) | | TINYINT | String String.valueOf(byte val)
byte Byte.valueOf(String str) | | SMALLINT | String String.valueOf(short val)
short Short.valueOf(String str) | | INTEGER | String String.valueOf(int val)
int Integer.valueOf(String str) | | DATE | String the day from epoch as int
date show as 2022-01-01 | | TIME | String the millisecond from 0'clock as int
time show as 04:04:01.023 | | BIGINT | String String.valueOf(long val)
long Long.valueOf(String str) | | FLOAT | String String.valueOf(float val)
float Float.valueOf(String str) | | DOUBLE | String String.valueOf(double val)
double Double.valueOf(String str) | | TIMESTAMP | String the millisecond from epoch as long
timestamp TimeStampData.fromEpochMillis(Long.valueOf(String str)) | # 5 使用示例: - ## 5.1 维表查询: ``` create table sink_redis(name varchar, level varchar, age varchar) with ( 'connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single','password'='******','command'='hset'); -- 先在redis中插入数据,相当于redis命令: hset 3 3 100 -- insert into sink_redis select * from (values ('3', '3', '100')); create table dim_table (name varchar, level varchar, age varchar) with ('connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single', 'password'='*****','command'='hget', 'maxIdle'='2', 'minIdle'='1', 'lookup.cache.max-rows'='10', 'lookup.cache.ttl'='10', 'max-retries'='3'); -- 随机生成10以内的数据作为数据源 -- -- 其中有一条数据会是: username = 3 level = 3, 会跟上面插入的数据关联 -- create table source_table (username varchar, level varchar, proctime as procTime()) with ('connector'='datagen', 'rows-per-second'='1', 'fields.username.kind'='sequence', 'fields.username.start'='1', 'fields.username.end'='10', 'fields.level.kind'='sequence', 'fields.level.start'='1', 'fields.level.end'='10'); create table sink_table(username varchar, level varchar,age varchar) with ('connector'='print'); insert into sink_table select s.username, s.level, d.age from source_table s left join dim_table for system_time as of s.proctime as d on d.name = s.username and d.level = s.level; -- username为3那一行会关联到redis内的值,输出为: 3,3,100 ``` - ## 5.2 多字段的维表关联查询 很多情况维表有多个字段,本实例展示如何利用'value.data.structure'='row'写多字段并关联查询。 ``` -- 创建表 create table sink_redis(uid VARCHAR,score double,score2 double ) with ( 'connector' = 'redis', 'host' = '10.11.69.176', 'port' = '6379', 'redis-mode' = 'single', 'password' = '****', 'command' = 'SET', 'value.data.structure' = 'row'); -- 'value.data.structure'='row':整行内容保存至value并以'\01'分割 -- 写入测试数据,score、score2为需要被关联查询出的两个维度 insert into sink_redis select * from (values ('1', 10.3, 10.1)); -- 在redis中,value的值为: "1\x0110.3\x0110.1" -- -- 写入结束 -- -- create join table -- create table join_table with ('command'='get', 'value.data.structure'='row') like sink_redis -- create result table -- create table result_table(uid VARCHAR, username VARCHAR, score double, score2 double) with ('connector'='print') -- create source table -- create table source_table(uid VARCHAR, username VARCHAR, proc_time as procTime()) with ('connector'='datagen', 'fields.uid.kind'='sequence', 'fields.uid.start'='1', 'fields.uid.end'='2') -- 关联查询维表,获得维表的多个字段值 -- insert into result_table select s.uid, s.username, j.score, -- 来自维表 j.score2 -- 来自维表 from source_table as s join join_table for system_time as of s.proc_time as j on j.uid = s.uid result: 2> +I[2, 1e0fe885a2990edd7f13dd0b81f923713182d5c559b21eff6bda3960cba8df27c69a3c0f26466efaface8976a2e16d9f68b3, null, null] 1> +I[1, 30182e00eca2bff6e00a2d5331e8857a087792918c4379155b635a3cf42a53a1b8f3be7feb00b0c63c556641423be5537476, 10.3, 10.1] ``` - ## 5.3 DataStream查询方式
示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.datastream.DataStreamTest.java
hset示例,相当于redis命令:*hset tom math 150* ``` Configuration configuration = new Configuration(); configuration.setString(REDIS_MODE, REDIS_SINGLE); configuration.setString(REDIS_COMMAND, RedisCommand.HSET.name()); configuration.setInteger(TTL, 10); RedisSinkMapper redisMapper = new RowRedisSinkMapper(RedisCommand.HSET, configuration); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); BinaryRowData binaryRowData = new BinaryRowData(3); BinaryRowWriter binaryRowWriter = new BinaryRowWriter(binaryRowData); binaryRowWriter.writeString(0, StringData.fromString("tom")); binaryRowWriter.writeString(1, StringData.fromString("math")); binaryRowWriter.writeString(2, StringData.fromString("152")); DataStream dataStream = env.fromElements(binaryRowData, binaryRowData); List columnNames = Arrays.asList("name", "subject", "scope"); List columnDataTypes = Arrays.asList(DataTypes.STRING(), DataTypes.STRING(), DataTypes.STRING()); ResolvedSchema resolvedSchema = ResolvedSchema.physical(columnNames, columnDataTypes); FlinkConfigBase conf = new FlinkSingleConfig.Builder() .setHost(REDIS_HOST) .setPort(REDIS_PORT) .setPassword(REDIS_PASSWORD) .build(); RedisSinkFunction redisSinkFunction = new RedisSinkFunction<>(conf, redisMapper, resolvedSchema, configuration); dataStream.addSink(redisSinkFunction).setParallelism(1); env.execute("RedisSinkTest"); ``` - ## 5.4 redis-cluster写入示例
示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.table.SQLInsertTest.java
set示例,相当于redis命令: *set test test11* ``` StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, environmentSettings); String ddl = "create table sink_redis(username VARCHAR, passport VARCHAR) with ( 'connector'='redis', " + "'cluster-nodes'='10.11.80.147:7000,10.11.80.147:7001','redis- mode'='cluster','password'='******','command'='set')" ; tEnv.executeSql(ddl); String sql = " insert into sink_redis select * from (values ('test', 'test11'))"; TableResult tableResult = tEnv.executeSql(sql); tableResult.getJobClient().get() .getJobExecutionResult() .get(); ``` # 6 解决问题联系我 ![img.png](img.png) # 7 开发环境 ide: IntelliJ IDEA code format: google-java-format + Save Actions flink 1.12/1.13/1.14+ jdk1.8 Lettuce 6.2.1 # 8 贡献 Pull Request需要提交至dev分支
提交前请使用mvn spotless:apply进行代码格式化,然后使用maven package打包确认所有测试用例能通过。 # 9 flink 1.12支持 请切换到分支flink-1.12(注:1.12使用jedis) ``` io.github.jeff-zou flink-connector-redis 1.1.1-1.12 ```