# RVC3-python **Repository Path**: jeremy775885/RVC3-python ## Basic Information - **Project Name**: RVC3-python - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-08-08 - **Last Updated**: 2024-08-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Robotics, Vision & Control: 3rd edition in Python (2023) [![A Python Robotics Package](https://raw.githubusercontent.com/petercorke/robotics-toolbox-python/master/.github/svg/py_collection.min.svg)](https://github.com/petercorke/robotics-toolbox-python) [![QUT Centre for Robotics Open Source](https://github.com/qcr/qcr.github.io/raw/master/misc/badge.svg)](https://qcr.github.io) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PyPI version](https://badge.fury.io/py/rvc3python.svg)](https://badge.fury.io/py/rvc3python) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/rvc3python.svg) [![PyPI - Downloads](https://img.shields.io/pypi/dw/rvc3python)](https://pypistats.org/packages/rvc3python)
Front cover 978-3-031-06468-5_5208 Welcome to the online hub for the book:
  • Robotics, Vision & Control: fundamental algorithms in Python (3rd edition)
  • Peter Corke, published by Springer-Nature 2023.
  • ISBN 978-3-031-06468-5 (hardcopy), 978-3-031-06469-2 (eBook)
  • DOI 10.1007/978-3-031-06469-2


Report an issue with the book or its supporting code here.

Known errata for the book can be viewed here.

This book uses many examples based on the following open-source Python packages Robotics Toolbox for Python Machine Vision Toolbox for Python Spatial Maths Toolbox for Python Block diagram simulation for Python **Robotics Toolbox for Python**, **Machine Vision Toolbox for Python**, **Spatial Maths Toolbox for Python**, **Block Diagram Simulation for Python**. These in turn have dependencies on other packages created by the author and third parties. ## Installing the package This package provides a simple one-step installation of *all* the required Toolboxes ```shell pip install rvc3python ``` or ```shell conda install rvc3python ``` There are a lot of dependencies and this might take a minute or so. You now have a very powerful computing environment for robotics and computer vision. ### Python version Given the rapid rate of language additions, particularly around type hinting, use at least Python 3.8. Python 3.7 goes end of life in June 2023. Not all package dependencies will work with the latest release of Python. In particular, check: * [PyTorch](https://pypi.org/project/torch/) used for segmentation examples in Chapter 12 * [Open3D](https://pypi.org/project/open3d), used for point cloud examples in Chapter 14. ### Installing into a Conda environment It's probably a good idea to create a virtual environment to keep this package and its dependencies separated from your other Python code and projects. If you've never used virtual environments before this might be a good time to start, and it is really easy [using Conda](https://conda.io/projects/conda/en/latest/user-guide/install/index.html): ```shell conda create -n RVC3 python=3.10 conda activate RVC3 pip install rvc3python ``` ### Installing deep learning tools Chapter 11 has some deep learning examples based on PyTorch. If you don't have PyTorch installed you can use the `pytorch` install option ```shell pip install rvc3python[pytorch] ``` or ```shell conda install rvc3python ``` ## Using the Toolboxes The simplest way to get going is to use the command line tool ```shell $ rvctool ____ _ _ _ __ ___ _ ___ ____ _ _ _____ | _ \ ___ | |__ ___ | |_(_) ___ ___ \ \ / (_)___(_) ___ _ __ ( _ ) / ___|___ _ __ | |_ _ __ ___ | | |___ / | |_) / _ \| '_ \ / _ \| __| |/ __/ __| \ \ / /| / __| |/ _ \| '_ \ / _ \/\ | | / _ \| '_ \| __| '__/ _ \| | |_ \ | _ < (_) | |_) | (_) | |_| | (__\__ \_ \ V / | \__ \ | (_) | | | | | (_> < | |__| (_) | | | | |_| | | (_) | | ___) | |_| \_\___/|_.__/ \___/ \__|_|\___|___( ) \_/ |_|___/_|\___/|_| |_| \___/\/ \____\___/|_| |_|\__|_| \___/|_| |____/ |/ for Python (RTB==1.1.0, MVTB==0.9.5, SG==1.1.7, SMTB==1.1.7, NumPy==1.24.2, SciPy==1.10.1, Matplotlib==3.7.1) import math import numpy as np from scipy import linalg, optimize import matplotlib.pyplot as plt from spatialmath import * from spatialmath.base import * from spatialmath.base import sym from spatialgeometry import * from roboticstoolbox import * from machinevisiontoolbox import * import machinevisiontoolbox.base as mvb # useful variables from math import pi puma = models.DH.Puma560() panda = models.DH.Panda() func/object? - show brief help help(func/object) - show detailed help func/object?? - show source code Results of assignments will be displayed, use trailing ; to suppress Python 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:24:27) [Clang 14.0.6 ] Type 'copyright', 'credits' or 'license' for more information IPython 8.11.0 -- An enhanced Interactive Python. Type '?' for help. >>> ``` This provides an interactive Python ([IPython](https://ipython.readthedocs.io/en/stable)) session with all the Toolboxes and supporting packages imported, and ready to go. It's a highly capable, convenient, and "MATLAB-like" workbench environment for robotics and computer vision. For example to load an ETS model of a Panda robot, solve a forward kinematics and inverse kinematics problem, and an interactive graphical display is simply: ```python >>> panda = models.ETS.Panda() ERobot: Panda (by Franka Emika), 7 joints (RRRRRRR) ┌─────┬───────┬───────┬────────┬─────────────────────────────────────────────┐ │link │ link │ joint │ parent │ ETS: parent to link │ ├─────┼───────┼───────┼────────┼─────────────────────────────────────────────┤ │ 0 │ link0 │ 0 │ BASE │ tz(0.333) ⊕ Rz(q0) │ │ 1 │ link1 │ 1 │ link0 │ Rx(-90°) ⊕ Rz(q1) │ │ 2 │ link2 │ 2 │ link1 │ Rx(90°) ⊕ tz(0.316) ⊕ Rz(q2) │ │ 3 │ link3 │ 3 │ link2 │ tx(0.0825) ⊕ Rx(90°) ⊕ Rz(q3) │ │ 4 │ link4 │ 4 │ link3 │ tx(-0.0825) ⊕ Rx(-90°) ⊕ tz(0.384) ⊕ Rz(q4) │ │ 5 │ link5 │ 5 │ link4 │ Rx(90°) ⊕ Rz(q5) │ │ 6 │ link6 │ 6 │ link5 │ tx(0.088) ⊕ Rx(90°) ⊕ tz(0.107) ⊕ Rz(q6) │ │ 7 │ @ee │ │ link6 │ tz(0.103) ⊕ Rz(-45°) │ └─────┴───────┴───────┴────────┴─────────────────────────────────────────────┘ ┌─────┬─────┬────────┬─────┬───────┬─────┬───────┬──────┐ │name │ q0 │ q1 │ q2 │ q3 │ q4 │ q5 │ q6 │ ├─────┼─────┼────────┼─────┼───────┼─────┼───────┼──────┤ │ qr │ 0° │ -17.2° │ 0° │ -126° │ 0° │ 115° │ 45° │ │ qz │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ 0° │ └─────┴─────┴────────┴─────┴───────┴─────┴───────┴──────┘ >>> panda.fkine(panda.qz) 0.7071 0.7071 0 0.088 0.7071 -0.7071 0 0 0 0 -1 0.823 0 0 0 1 >>> panda.ikine_LM(SE3.Trans(0.4, 0.5, 0.2) * SE3.Ry(pi/2)) IKSolution(q=array([ -1.849, -2.576, -2.914, 1.22, -1.587, 2.056, -1.013]), success=True, iterations=13, searches=1, residual=3.3549072615799585e-10, reason='Success') >>> panda.teach(panda.qz) ``` ![](https://github.com/petercorke/RVC3-python/raw/main/doc/panda_noodle.png) Computer vision is just as easy. For example, we can import an image, blur it and display it alongside the original ```python >>> mona = Image.Read("monalisa.png") >>> Image.Hstack([mona, mona.smooth(sigma=5)]).disp() ``` ![](https://github.com/petercorke/machinevision-toolbox-python/raw/master/figs/mona%2Bsmooth.png) or load two images of the same scene, compute SIFT features and display putative matches ```python >>> sf1 = Image.Read("eiffel-1.png", mono=True).SIFT() >>> sf2 = Image.Read("eiffel-2.png", mono=True).SIFT() >>> matches = sf1.match(sf2) >>> matches.subset(100).plot("w") ``` ![](https://github.com/petercorke/machinevision-toolbox-python/raw/master/figs/matching.png) `rvctool` is a wrapper around [IPython](https://ipython.readthedocs.io/en/stable) where: - robotics and vision functions and classes can be accessed without needing package prefixes - results are displayed by default like MATLAB does, and like MATLAB you need to put a semicolon on the end of the line to prevent this - the prompt is the standard Python REPL prompt `>>>` rather than the IPython prompt, this can be overridden by a command-line switch - allows cutting and pasting in lines from the book, and prompt characters are ignored The Robotics, Vision & Control book uses `rvctool` for all the included examples. `rvctool` imports the all the above mentioned packages using `import *` which is not considered best Python practice. It is very convenient for interactive experimentation, but in your own code you can handle the imports as you see fit. ### Cutting and pasting IPython is very forgiving when it comes to cutting and pasting in blocks of Python code. It will strip off the `>>>` prompt character and ignore indentation. The normal python REPL is not so forgiving. IPython also maintains a command history and allows command editing. ### Simple scripting You can write very simple scripts, for example `test.py` is ```python T = puma.fkine(puma.qn) sol = puma.ikine_LM(T) sol.q puma.plot(sol.q); ``` then ```shell $ rvctool test.py 0 0 1 0.5963 0 1 0 -0.1501 -1 0 0 0.6575 0 0 0 1 IKSolution(q=array([7.235e-08, -0.8335, 0.09396, 3.142, 0.8312, -3.142]), success=True, iterations=15, searches=1, residual=1.406125546650288e-07, reason='Success') array([7.235e-08, -0.8335, 0.09396, 3.142, 0.8312, -3.142]) PyPlot3D backend, t = 0.05, scene: robot: Text(0.0, 0.0, 'Puma 560') >>> ``` and you are dropped into an IPython session after the script has run. ## Issues running on Apple Silicon Check out the [wiki page](https://github.com/petercorke/RVC3-python/wiki/Running-on-Apple-Silicon). ## Using Jupyter and Colab Graphics and animations are problematic in these environments, some things work well, some don't. As much as possible I've tweaked the Jupyter notebooks to work as best they can in these environments. For local use the [Jupyter plugin for Visual Studio Code](https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter) is pretty decent. Colab suffers from old versions of major packages (though they are getting better at keeping up to date) and animations can suffer from slow update over the network. ## Other command line tools Additional command line tools available (from the Robotics Toolbox) include: - `eigdemo`, animation showing linear transformation of a rotating unit vector which demonstrates eigenvalues and eigenvectors. - `tripleangledemo`, Swift visualization that lets you experiment with various triple-angle sequences. - `twistdemo`, Swift visualization that lets you experiment with 3D twists. The screw axis is the blue rod and you can position and orient it using the sliders, and adjust its pitch. Then apply a rotation about the screw using the bottom slider. # Block diagram models bdsim logo Block diagram models are key to the pedagogy of the RVC3 book and 25 models are included. To simulate these models we use the Python package [bdsim](https://github.com/petercorke/bdsim) which can run models: - written in Python using [bdsim](https://github.com/petercorke/bdsim#getting-started) blocks and wiring. - created graphically using [bdedit](https://github.com/petercorke/bdsim#bdedit-the-graphical-editing-tool) and saved as a `.bd` (JSON format) file. The models are included in the `RVC3` package when it is installed and `rvctool` adds them to the module search path. This means you can invoke them from `rvctool` by ```python >>> %run -m vloop_test ``` If you want to directly access the folder containing the models, the command line tool ```shell bdsim_path ``` will display the full path to where they have been installed in the Python package tree. # Additional book resources Front cover 978-3-031-06468-5_5208 This GitHub repo provides additional resources for readers including: - Jupyter notebooks containing all code lines from each chapter, see the [`notebooks`](notebooks) folder - The code to produce every Python/Matplotlib (2D) figure in the book, see the [`figures`](figures) folder - 3D points clouds from chapter 14, and the code to create them, see the [`pointclouds`](../pointclouds) folder. - 3D figures from chapters 2-3, 7-9, and the code to create them, see the [`3dfigures`](../3dfigures) folder. - All example scripts, see the [`examples`](examples) folder. - To run the visual odometry example in Sect. 14.8.3 you need to download two image sequence, each over 100MB, [see the instructions here](https://github.com/petercorke/machinevision-toolbox-python/blob/master/mvtb-data/README.md#install-big-image-files). To get that material you must clone the repo ```shell git clone https://github.com/petercorke/RVC3-python.git ```