# jobot_factory_simple_nlp **Repository Path**: jeusgao/jobot_factory_simple_nlp ## Basic Information - **Project Name**: jobot_factory_simple_nlp - **Description**: TF Model building/training/evaluating for simple nlp task just by params configuration, training/evaluating monitor and params configure GUI with streamlit. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 0 - **Created**: 2021-01-23 - **Last Updated**: 2024-03-03 ## Categories & Tags **Categories**: machine-learning **Tags**: None ## README A light tool for TF Model building/training/evaluating for simple nlp tasks just by params configuration, training/evaluating monitor and params configure GUI with streamlit, and auto publish all models' predictor apis copy pretrained LM into hub/bases/ (bert, rbt, albert ...) ## How to run: 1. run init_params first to generate params template... 2. streamlit run home.py --server.port=PORT 3. celery -A celery_training worker -l INFO --pidfile=celery/%n.pid --logfile=celery/%n%I.log open localhost:PORT with a broswer ... ## Rest service: * uvicorn rest_service.handlers:app --port=REST_SERVER-PORT or python3 rest_server.py -p=REST_SERVER-PORT ## ENV python >= 3.6
test with tf 2.4.0, 2.2.2
## Preview ### *common params setting* ### *model layers settings* ### *model layers' params settings* ### *trainning monitoring* ### *trainning scores* ### *api published automaticly* ## references: #### keras-bert #### Kashgari #### Bert4Keras