# jobot_factory_simple_nlp
**Repository Path**: jeusgao/jobot_factory_simple_nlp
## Basic Information
- **Project Name**: jobot_factory_simple_nlp
- **Description**: TF Model building/training/evaluating for simple nlp task just by params configuration, training/evaluating monitor and params configure GUI with streamlit.
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 5
- **Forks**: 0
- **Created**: 2021-01-23
- **Last Updated**: 2024-03-03
## Categories & Tags
**Categories**: machine-learning
**Tags**: None
## README
A light tool for TF Model building/training/evaluating for simple nlp tasks just by params configuration, training/evaluating monitor and params configure GUI with streamlit, and auto publish all models' predictor apis
copy pretrained LM into hub/bases/ (bert, rbt, albert ...)
## How to run:
1. run init_params first to generate params template...
2. streamlit run home.py --server.port=PORT
3. celery -A celery_training worker -l INFO --pidfile=celery/%n.pid --logfile=celery/%n%I.log
open localhost:PORT with a broswer ...
## Rest service:
* uvicorn rest_service.handlers:app --port=REST_SERVER-PORT or python3 rest_server.py -p=REST_SERVER-PORT
## ENV
python >= 3.6
test with tf 2.4.0, 2.2.2
## Preview
### *common params setting*
### *model layers settings*
### *model layers' params settings*
### *trainning monitoring*
### *trainning scores*
### *api published automaticly*
## references:
#### keras-bert
#### Kashgari
#### Bert4Keras