# wgan-gp **Repository Path**: jfttpt/wgan-gp ## Basic Information - **Project Name**: wgan-gp - **Description**: A pytorch implementation of Paper "Improved Training of Wasserstein GANs" - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-09-20 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". # Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU **A latest master version of Pytorch** # Progress - [x] gan_toy.py : Toy datasets (8 Gaussians, 25 Gaussians, Swiss Roll).(**Finished** in 2017.5.8) - [x] gan_language.py : Character-level language model (Discriminator is using **nn.Conv1d**. Generator is using **nn.Conv1d**. **Finished** in 2017.6.23. Finished in 2017.6.27.) - [x] gan_mnist.py : MNIST (**Running Results while Finished** in 2017.6.26. Discriminator is using **nn.Conv1d**. Generator is using **nn.Conv1d**.) - [ ] gan_64x64.py: 64x64 architectures(**Looking forward to your pull request**) - [x] gan_cifar.py: CIFAR-10(**Great thanks to [robotcator](https://github.com/caogang/wgan-gp/pull/18)**) # Results - [Toy Dataset](results/toy/) Some Sample Result, you can refer to the [results/toy/](results/toy/) folder for **details**. - **8gaussians 154500 iteration** ![frame1612](imgs/8gaussians_frame1545.jpg) - **25gaussians 48500 iteration** ![frame485](imgs/25gaussians_frame485.jpg) - **swissroll 69400 iteration** ![frame694](imgs/swissroll_frame694.jpg) - [Mnist Dataset](results/mnist/) Some Sample Result, you can refer to the [results/mnist/](results/mnist/) folder for **details**. ![mnist_samples_91899](imgs/mnist_samples_91899.png) ![mnist_samples_91899](imgs/mnist_samples_92299.png) ![mnist_samples_91899](imgs/mnist_samples_92499.png) ![mnist_samples_199999](imgs/mnist_samples_199999.png) - Billion Word Language Generation (Using CNN, character-level) Some Sample Result after 8699 epochs which is detailed in [sample](imgs/lang_samples_8699.txt) I haven't run enough epochs due to that this is very time-comsuming. > He moved the mat all out clame t > > A fosts of shores forreuid he pe > > It whith Crouchy digcloued defor > > Pamreutol the rered in Car inson > > Nor op to the lecs ficomens o fe > > In is a " nored by of the ot can > > The onteon I dees this pirder , > > It is Brobes aoracy of " medurn > > Rame he reaariod to thim atreast > > The stinl who herth of the not t > > The witl is f ont UAy Y nalence > > It a over , tose sho Leloch Cumm - [Cifar10 Dataset](results/cifar10/) Some Sample Result, you can refer to the [results/cifar10/](results/cifar10/) folder for **details**. ![mnist_samples_91899](imgs/cifar10_samples_80099.jpg) # Acknowledge Based on the implementation [igul222/improved_wgan_training](https://github.com/igul222/improved_wgan_training) and [martinarjovsky/WassersteinGAN](https://github.com/martinarjovsky/WassersteinGAN)