# Generative_Adversarial_Networks_PyTorch **Repository Path**: jiguo_li/Generative_Adversarial_Networks_PyTorch ## Basic Information - **Project Name**: Generative_Adversarial_Networks_PyTorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-06 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Generative Adversarial Networks in PyTorch ======= [![Build Status](https://travis-ci.org/AaronYALai/Generative_Adversarial_Networks_PyTorch.svg?branch=master)](https://travis-ci.org/AaronYALai/Generative_Adversarial_Networks_PyTorch) [![Coverage Status](https://coveralls.io/repos/github/AaronYALai/Generative_Adversarial_Networks_PyTorch/badge.svg?branch=master)](https://coveralls.io/github/AaronYALai/Generative_Adversarial_Networks_PyTorch?branch=master) About -------- The repo is about the implementations of GAN, DCGAN, Improved GAN, LAPGAN, and InfoGAN in PyTorch. My presentation about GANs' recent development (at 2017.01.17): [Presentation slides](https://docs.google.com/presentation/d/1HRNjCo_0PlspynoJKuoEF1AYkaKaUNgMzQ4nqiTlNUM/edit#slide=id.p) Presented in the group meeting of Machine Discovery and Social Network Mining Lab, National Taiwan University. Content -------- - Generative Adversarial Nets (GAN): invented "adversarial nets" framework - a generative model G and a discriminative model D play a minimax two-player game. - DC-GAN: proposed a set of constraints on the architectural topology of Convolutional GANs that make them stable to train in most settings. - LAP-GAN: a cascade of generative models within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion (high-resolution). - Improved GAN (minibatch discrimination): allow the discriminator to look at multiple data examples in combination by incorporating the closeness between examples in a minibatch as side information. - Info-GAN: an information-theoretic modification to the objective of Generative Adversarial Network that encourages it to learn interpretable and disentangled representations. Example --------- #### Sampled from MNIST dataset: #### Generated by DCGAN: #### Generated by Improved GAN: #### Generated by Info-GAN: Usage -------- Clone the repo and use the [virtualenv](http://www.virtualenv.org/): git clone https://github.com/AaronYALai/Generative_Adversarial_Networks_PyTorch cd Generative_Adversarial_Networks_PyTorch virtualenv venv source venv/bin/activate Install pytorch and all dependencies and run the model (in Linux): pip install https://download.pytorch.org/whl/cu75/torch-0.1.10.post2-cp27-none-linux_x86_64.whl pip install torchvision pip install -r requirements.txt cd GAN python run_GAN.py More details about the installation about PyTorch: References -------- - GAN: I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” NIPS, 2014. - DC-GAN: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv 2015. - LAP-GAN: Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks." NIPS 2015. - Improved GAN: Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. “Improved techniques for training gans.” NIPS 2016. - Info-GAN: Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. “Infogan: Interpretable representation learning by information maximizing generative adversarial nets.” NIPS 2016.