# BasicSR
**Repository Path**: jih488/BasicSR
## Basic Information
- **Project Name**: BasicSR
- **Description**: 开源图像和视频复原工具包(目前主要是超分辨率), 包括: EDSR, RCAN, SRResNet, SRGAN, ESRGAN, EDVR 等模型. 也支持了 StyleGAN2 和 DFDNet.
- **Primary Language**: Python
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: http://xinntao.gitee.io/
- **GVP Project**: No
## Statistics
- **Stars**: 1
- **Forks**: 44
- **Created**: 2020-09-23
- **Last Updated**: 2024-11-23
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# :rocket: BasicSR
[English](README.md) **|** [简体中文](README_CN.md) [GitHub](https://github.com/xinntao/BasicSR) **|** [Gitee码云](https://gitee.com/xinntao/BasicSR)
Google Colab: [GitHub Link](colab) **|** [Google Drive Link](https://drive.google.com/drive/folders/1G_qcpvkT5ixmw5XoN6MupkOzcK1km625?usp=sharing)
:m: [Model Zoo](docs/ModelZoo.md) :arrow_double_down: Google Drive: [Pretrained Models](https://drive.google.com/drive/folders/15DgDtfaLASQ3iAPJEVHQF49g9msexECG?usp=sharing) **|** [Reproduced Experiments](https://drive.google.com/drive/folders/1XN4WXKJ53KQ0Cu0Yv-uCt8DZWq6uufaP?usp=sharing)
:arrow_double_down: 百度网盘: [预训练模型](https://pan.baidu.com/s/1R6Nc4v3cl79XPAiK0Toe7g) **|** [复现实验](https://pan.baidu.com/s/1UElD6q8sVAgn_cxeBDOlvQ)
:file_folder: [Datasets](docs/DatasetPreparation.md) :arrow_double_down: [Google Drive](https://drive.google.com/drive/folders/1gt5eT293esqY0yr1Anbm36EdnxWW_5oH?usp=sharing) :arrow_double_down: [百度网盘](https://pan.baidu.com/s/1AZDcEAFwwc1OC3KCd7EDnQ) (提取码:basr)
:chart_with_upwards_trend: [Training curves in wandb](https://app.wandb.ai/xintao/basicsr)
:computer: [Commands for training and testing](docs/TrainTest.md)
:zap: [HOWTOs](#zap-howtos)
---
BasicSR (**Basic** **S**uper **R**estoration) is an open source **image and video restoration** toolbox based on PyTorch, such as super-resolution, denoise, deblurring, JPEG artifacts removal, *etc*.
([ESRGAN](https://github.com/xinntao/ESRGAN), [EDVR](https://github.com/xinntao/EDVR), [DNI](https://github.com/xinntao/DNI), [SFTGAN](https://github.com/xinntao/SFTGAN))
([HandyView](https://github.com/xinntao/HandyView), [HandyFigure](https://github.com/xinntao/HandyFigure), [HandyCrawler](https://github.com/xinntao/HandyCrawler), [HandyWriting](https://github.com/xinntao/HandyWriting))
## :sparkles: New Features
- Nov 29, 2020. Add **ESRGAN** and **DFDNet** [colab demo](colab).
- Sep 8, 2020. Add **blind face restoration** inference codes: [DFDNet](https://github.com/csxmli2016/DFDNet).
- Aug 27, 2020. Add **StyleGAN2 training and testing** codes: [StyleGAN2](https://github.com/rosinality/stylegan2-pytorch).
More
ECCV20: Blind Face Restoration via Deep Multi-scale Component Dictionaries
Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo and Lei Zhang
CVPR20: Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen and Timo Aila
(Make sure that your GCC version: gcc >= 5)
If you do need the cuda extensions:
[*dcn* for EDVR](basicsr/ops)
[*upfirdn2d* and *fused_act* for StyleGAN2](basicsr/ops)
please add `--cuda_ext` when installing.
If you use the EDVR and StyleGAN2 model, the above cuda extensions are necessary.
```bash
python setup.py develop --cuda_ext
```
Otherwise, install without compiling cuda extensions
```bash
python setup.py develop
```
You may also want to specify the CUDA paths:
```bash
CUDA_HOME=/usr/local/cuda \
CUDNN_INCLUDE_DIR=/usr/local/cuda \
CUDNN_LIB_DIR=/usr/local/cuda \
python setup.py develop
```
Note that BasicSR is only tested in Ubuntu, and may be not suitable for Windows. You may try [Windows WSL with CUDA supports](https://docs.microsoft.com/en-us/windows/win32/direct3d12/gpu-cuda-in-wsl) :-) (It is now only available for insider build with Fast ring).
## :hourglass_flowing_sand: TODO List
Please see [project boards](https://github.com/xinntao/BasicSR/projects).
## :turtle: Dataset Preparation
- Please refer to **[DatasetPreparation.md](docs/DatasetPreparation.md)** for more details.
- The descriptions of currently supported datasets (`torch.utils.data.Dataset` classes) are in [Datasets.md](docs/Datasets.md).
## :computer: Train and Test
- **Training and testing commands**: Please see **[TrainTest.md](docs/TrainTest.md)** for the basic usage.
- **Options/Configs**: Please refer to [Config.md](docs/Config.md).
- **Logging**: Please refer to [Logging.md](docs/Logging.md).
## :european_castle: Model Zoo and Baselines
- The descriptions of currently supported models are in [Models.md](docs/Models.md).
- **Pre-trained models and log examples** are available in **[ModelZoo.md](docs/ModelZoo.md)**.
- We also provide **training curves** in [wandb](https://app.wandb.ai/xintao/basicsr):