# TwinLiteNet
**Repository Path**: jiujiangluck/TwinLiteNet
## Basic Information
- **Project Name**: TwinLiteNet
- **Description**: No description available
- **Primary Language**: Python
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-01-23
- **Last Updated**: 2024-01-23
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars
## Requirement
See `requirements.txt` for additional dependencies and version requirements.
```setup
pip install -r requirements.txt
```
## Data Preparation
- Download the images from [images](https://bdd-data.berkeley.edu/).
- Download the annotations of drivable area segmentation from [segments](https://drive.google.com/file/d/1xy_DhUZRHR8yrZG3OwTQAHhYTnXn7URv/view?usp=sharing).
- Download the annotations of lane line segmentation from [lane](https://drive.google.com/file/d/1lDNTPIQj_YLNZVkksKM25CvCHuquJ8AP/view?usp=sharing).
```bash
/data
bdd100k
images
train/
val/
test/
segments
train/
val/
lane
train/
val/
```
## Pipeline
## Train
```python
python3 main.py
```
## Test
```python
python3 val.py
```
## Inference
### Images
```python
python3 test_image.py
```
## Visualize
### Drive-able segmentation
### Lane Detection
## Acknowledgement
Our source code is inspired by:
- [ESPNet](https://github.com/sacmehta/ESPNet)
- [YOLOP](https://github.com/hustvl/YOLOP)
## Citation
If you find our paper and code useful for your research, please consider giving a star :star: and citation :pencil: :
```BibTeX
@INPROCEEDINGS{10288646,
author={Che, Quang-Huy and Nguyen, Dinh-Phuc and Pham, Minh-Quan and Lam, Duc-Khai},
booktitle={2023 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)},
title={TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars},
year={2023},
volume={},
number={},
pages={1-6},
doi={10.1109/MAPR59823.2023.10288646}}
```
# TwinLiteNetV2: A small stone can kill a giant
## 🚀 Coming soon!
[](https://paperswithcode.com/sota/lane-detection-on-bdd100k-val?p=twinlitenet-an-efficient-and-lightweight)
[](https://paperswithcode.com/sota/drivable-area-detection-on-bdd100k-val?p=twinlitenet-an-efficient-and-lightweight)
| Model | size
(Height x Width) | Lane
(Accuracy) | Lane
(IOU) | Drivable Area
(mIOU) | params
(M) | FLOPs
(B) |
| ----- | ----------------------------- | ----------------------- | ------------------ | ----------------------------- | ----------------------------- | ----------------------------- |
| [TwinLiteNetV2-Nano]()| 384 x 640 | 70.8 | 23.6 | 87.2 | 0.03 | 0.485 |
| [TwinLiteNetV2-Small]()| 384 x 640 | 75.9 | 28.7 | 90.4 | 0.14 | 1.366 |
| [TwinLiteNetv2-Medium]()| 384 x 640 | 79.3 | 32.6 | 92.3 | 0.62 | 5.088 |
| [TwinLiteNetV2-Large]() | 384 x 640 | 81.7 | 34.2 | 92.9 | 2.78 | 21.526 |