# TwinLiteNet **Repository Path**: jiujiangluck/TwinLiteNet ## Basic Information - **Project Name**: TwinLiteNet - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-23 - **Last Updated**: 2024-01-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars ## Requirement See `requirements.txt` for additional dependencies and version requirements. ```setup pip install -r requirements.txt ``` ## Data Preparation - Download the images from [images](https://bdd-data.berkeley.edu/). - Download the annotations of drivable area segmentation from [segments](https://drive.google.com/file/d/1xy_DhUZRHR8yrZG3OwTQAHhYTnXn7URv/view?usp=sharing). - Download the annotations of lane line segmentation from [lane](https://drive.google.com/file/d/1lDNTPIQj_YLNZVkksKM25CvCHuquJ8AP/view?usp=sharing). ```bash /data bdd100k images train/ val/ test/ segments train/ val/ lane train/ val/ ``` ## Pipeline
## Train ```python python3 main.py ``` ## Test ```python python3 val.py ``` ## Inference ### Images ```python python3 test_image.py ``` ## Visualize ### Drive-able segmentation
### Lane Detection
## Acknowledgement Our source code is inspired by: - [ESPNet](https://github.com/sacmehta/ESPNet) - [YOLOP](https://github.com/hustvl/YOLOP) ## Citation If you find our paper and code useful for your research, please consider giving a star :star: and citation :pencil: : ```BibTeX @INPROCEEDINGS{10288646, author={Che, Quang-Huy and Nguyen, Dinh-Phuc and Pham, Minh-Quan and Lam, Duc-Khai}, booktitle={2023 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)}, title={TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars}, year={2023}, volume={}, number={}, pages={1-6}, doi={10.1109/MAPR59823.2023.10288646}} ```
# TwinLiteNetV2: A small stone can kill a giant ## 🚀 Coming soon! [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/twinlitenet-an-efficient-and-lightweight/lane-detection-on-bdd100k-val)](https://paperswithcode.com/sota/lane-detection-on-bdd100k-val?p=twinlitenet-an-efficient-and-lightweight) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/twinlitenet-an-efficient-and-lightweight/drivable-area-detection-on-bdd100k-val)](https://paperswithcode.com/sota/drivable-area-detection-on-bdd100k-val?p=twinlitenet-an-efficient-and-lightweight) | Model | size
(Height x Width) | Lane
(Accuracy) | Lane
(IOU) | Drivable Area
(mIOU) | params
(M) | FLOPs
(B) | | ----- | ----------------------------- | ----------------------- | ------------------ | ----------------------------- | ----------------------------- | ----------------------------- | | [TwinLiteNetV2-Nano]()| 384 x 640 | 70.8 | 23.6 | 87.2 | 0.03 | 0.485 | | [TwinLiteNetV2-Small]()| 384 x 640 | 75.9 | 28.7 | 90.4 | 0.14 | 1.366 | | [TwinLiteNetv2-Medium]()| 384 x 640 | 79.3 | 32.6 | 92.3 | 0.62 | 5.088 | | [TwinLiteNetV2-Large]() | 384 x 640 | 81.7 | 34.2 | 92.9 | 2.78 | 21.526 |