# GCPANet **Repository Path**: joezhumin/GCPANet ## Basic Information - **Project Name**: GCPANet - **Description**: Global Context-Aware Progressive Aggregation Network for Salient Object Detection - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-28 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Global Context-Aware Progressive Aggregation Network for Salient Object Detection This repo. is an implementation of *GCPANet* , which is accepted for presentation in *AAAI 2020*. ![GCPANet](figures/main.png) ![vis](figures/vis.png) ## dependencies ``` >= Ubuntu 16.04 >= Python3.5 >= Pytorch 1.0.0 OpenCV-Python ``` ## preparation - download the official pretrained model ([Google drive](https://drive.google.com/open?id=107fXhddjD4LBEYvMtYqlPmjuZOfhhEnN)) of ResNet-50 implemented in Pytorch if you want to train the network again. - download or put the RGB saliency benchmark datasets ([Google drive](https://drive.google.com/open?id=1S8jC0c-vYEGV0jX9ZizPH8SPaKQ7zxM1)) in the folder of `data` for training or test. ## training you may revise the `TAG` and `SAVEPATH` defined in the *train.py*. After the preparation, run this command ``` python3 train.py ``` make sure that the GPU memory is enough (the original training is conducted on a NVIDIA RTX (24G) card with the batch size of 32). ## test After the preparation, run this commond ``` python3 test.py model/model-xxxxx.pt ``` We provide the trained model file ([Google drive](https://drive.google.com/open?id=1YKkzYzZuCbGs0zVQwRQ-z8_ounUgYb0d)), and run this command to check its completeness: ``` cksum model-100045448.pt ``` you will obtain the result `100045448 268562671 model_100045448.pt`. The saliency maps are also available ([Google drive](https://drive.google.com/open?id=19fkcf1F8BUmLwjYqqDMuVcFGhMGCBnzE)). ## evaluation We provide the evaluation code in the folder "eval_code" for fair comparisons. You may need to revise the `algorithms` , `data_root`, and `maps_root` defined in the `main.m`. The saliency maps of the competitors are provided ([Google drive](https://drive.google.com/open?id=1JiIKySc3-IwfoUhNW7qNul9T3pfkqnYu)).